2022-2023学年山东省莱芜市中考数学押题试卷含解析.doc
-
资源ID:87797437
资源大小:869KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年山东省莱芜市中考数学押题试卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1下列计算正确的是()Aa2a3a6B(a2)3a6Ca2+a2a3Da6÷a2a32关于反比例函数,下列说法正确的是( )A函数图像经过点(2,2);B函数图像位于第一、三象限;C当时,函数值随着的增大而增大;D当时,3下列计算正确的是ABCD4在实数,中,其中最小的实数是()ABCD55的倒数是AB5CD56如图所示是由几个完全相同的小正方体组成的几何体的三视图若小正方体的体积是1,则这个几何体的体积为()A2B3C4D57圆锥的底面直径是80cm,母线长90cm,则它的侧面积是ABCD8如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D、C的位置,若EFB=65°,则AED为( )。A70°B65°C50°D25°9苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A(a+b)元B(3a+2b)元C(2a+3b)元D5(a+b)元10下列计算正确的是()Aa3a2a6B(a3)2a5C(ab2)3ab6Da+2a3a二、填空题(本大题共6个小题,每小题3分,共18分)11正多边形的一个外角是,则这个多边形的内角和的度数是_12如图,菱形ABCD的边长为15,sinBAC=,则对角线AC的长为_. 13抛物线y=(x2)23的顶点坐标是_14如图,在RtAOB中,AOB90°,OA3,OB2,将RtAOB绕点O顺时针旋转90°后得RtFOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_15如图,直线y1kx+n(k0)与抛物线y2ax2+bx+c(a0)分别交于A(1,0),B(2,3)两点,那么当y1y2时,x的取值范围是_16不等式组的解集是_三、解答题(共8题,共72分)17(8分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.求,的值;求四边形的面积.18(8分)在等边ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.(1)依题意补全图1,并求BEC的度数;(2)如图2,当MAC30°时,判断线段BE与DE之间的数量关系,并加以证明;(3)若0°MAC120°,当线段DE2BE时,直接写出MAC的度数.19(8分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全频数分布直方图;(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读20(8分)如图,在大楼AB正前方有一斜坡CD,坡角DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.21(8分)已知:如图,AB=AE,1=2,B=E求证:BC=ED22(10分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB的中点将ACD绕点A顺时针方向旋转,得ACD,记旋转角为(I)如图,连接BD,当BDOA时,求点D的坐标;(II)如图,当60°时,求点C的坐标;(III)当点B,D,C共线时,求点C的坐标(直接写出结果即可)23(12分)如图,点,在上,直线是的切线,连接交于(1)求证:(2)若,的半径为,求的长24先化简,然后从x的范围内选取一个合适的整数作为x的值代入求值参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题解析:A.故错误.B.正确.C.不是同类项,不能合并,故错误.D. 故选B.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.2、C【解析】直接利用反比例函数的性质分别分析得出答案【详解】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-,当x1时,y-4,故此选项错误;故选C【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键3、C【解析】根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可【详解】、与不是同类项,不能合并,此选项错误;、,此选项错误;、,此选项正确;、,此选项错误故选:【点睛】此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键4、B【解析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解【详解】解:0,-2,1,中,-201,其中最小的实数为-2;故选:B【点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小5、C【解析】若两个数的乘积是1,我们就称这两个数互为倒数【详解】解:5的倒数是故选C6、C【解析】根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.故选C.【点睛】错因分析 容易题,失分原因:未掌握通过三视图还原几何体的方法.7、D【解析】圆锥的侧面积=×80×90=3600(cm2) .故选D8、C【解析】首先根据ADBC,求出FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知DEF=FED,最后求得AED的大小【详解】解:ADBC,EFB=FED=65°,由折叠的性质知,DEF=FED=65°,AED=180°-2FED=50°,故选:C【点睛】此题考查了长方形的性质与折叠的性质此题比较简单,解题的关键是注意数形结合思想的应用9、C【解析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.10、D【解析】根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案【详解】解:Ax4x4=x4+4=x8x16,故该选项错误;B(a3)2=a3×2=a6a5,故该选项错误;C(ab2)3=a3b6ab6,故该选项错误;Da+2a=(1+2)a=3a,故该选项正确;故选D考点:1同底数幂的乘法;2积的乘方与幂的乘方;3合并同类项二、填空题(本大题共6个小题,每小题3分,共18分)11、540°【解析】根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°考点:多边形的内角和与外角和12、24【解析】试题分析:因为四边形ABCD是菱形,根据菱形的性质可知,BD与AC互相垂直且平分,因为,AB=10,所以BD=6,根据勾股定理可求的AC=8,即AC=16;考点:三角函数、菱形的性质及勾股定理;13、(2,3)【解析】根据:对于抛物线y=a(xh)2+k的顶点坐标是(h,k).【详解】抛物线y=(x2)23的顶点坐标是(2,3).故答案为(2,3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.14、8【解析】分析:如下图,过点D作DHAE于点H,由此可得DHE=AOB=90°,由旋转的性质易得DE=EF=AB,OE=BO=2,OF=AO=3,DEF=FEO+DEH=90°,ABO=FEO,结合ABO+BAO=90°可得BAO=DEH,从而可证得DEHBAO,即可得到DH=BO=2,再由勾股定理求得AB的长,即可由S阴影=S扇形AOF+SOEF+SADE-S扇形DEF即可求得阴影部分的面积.详解:如下图,过点D作DHAE于点H,DHE=AOB=90°,OA=3,OB=2,AB=,由旋转的性质结合已知条件易得:DE=EF=AB= ,OE=BO=2,OF=AO=3,DEF=FEO+DEH=90°,ABO=FEO,又ABO+BAO=90°,BAO=DEH,DEHBAO,DH=BO=2,S阴影=S扇形AOF+SOEF+SADE-S扇形DEF=.故答案为:.点睛:作出如图所示的辅助线,利用旋转的性质证得DEHBAO,由此得到DH=BO=2,从而将阴影部分的面积转化为:S阴影=S扇形AOF+SOEF+SADE-S扇形DEF来计算是解答本题的关键.15、1x2【解析】根据图象得出取值范围即可【详解】解:因为直线y1kx+n(k0)与抛物线y2ax2+bx+c(a0)分别交于A(1,0),B(2,3)两点,所以当y1y2时,1x2,故答案为1x2【点睛】此题考查二次函数与不等式,关键是根据图象得出取值范围16、2x1【解析】本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集【详解】由得x2,由得x1,不等式组的解集为2x1故答案为:2x1【点睛】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)三、解答题(共8题,共72分)17、(1),.(2)6【解析】(1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.【详解】解:(1)点在上,点在上,且,.过,两点,解得,.(2)如图,延长,交于点,则.轴,轴,.四边形的面积为6.【点睛】考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.18、(1)补全图形如图1所示,见解析,BEC60°;(2)BE2DE,见解析;(3)MAC90°.【解析】(1)根据轴对称作出图形,先判断出ABDADBy,再利用三角形的内角和得出x+y即可得出结论;(2)同(1)的方法判断出四边形ABCD是菱形,进而得出CBD30°,进而得出BCD90°,即可得出结论;(3)先作出EF2BE,进而判断出EFCE,再判断出CBE90°,进而得出BCE30°,得出AEC60°,即可得出结论.【详解】(1)补全图形如图1所示,根据轴对称得,ADAC,DAECAEx,DEMCEM.ABC是等边三角形,ABAC,BAC60°.ABAD.ABDADBy.在ABD中,2x+2y+60°180°,x+y60°.DEMCEMx+y60°.BEC60°;(2)BE2DE,证明:ABC是等边三角形,ABBCAC,由对称知,ADAC,CAD2CAM60°,ACD是等边三角形,CDAD,ABBCCDAD,四边形ABCD是菱形,且BAD2CAD120°,ABC60°,ABDDBC30°,由(1)知,BEC60°,ECB90°.BE2CE.CEDE,BE2DE.(3)如图3,(本身点C,A,D在同一条直线上,为了说明CBD90°,画图时,没画在一条直线上)延长EB至F使BEBF,EF2BE,由轴对称得,DECE,DE2BE,CE2BE,EFCE,连接CF,同(1)的方法得,BEC60°,CEF是等边三角形,BEBF,CBE90°,BCE30°,ACE30°,AEDAEC,BEC60°,AEC60°,MAC180°AECACE90°.【点睛】此题是三角形综合题,主要考查了等边三角形的判定和性质,轴对称的性质,等腰三角形的性质,三角形的内角和定理,作出图形是解本题的关键.19、(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36°;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人【解析】(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360°乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.【详解】(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,总调查人数20÷20%100人;(2)参加娱乐的人数100×40%40人,从条形统计图中得出参加阅读的人数为30人,“其它”类的人数10040302010人,所占比例10÷10010%,在扇形统计图中“其它”类的圆心角360×10%36°;(3)如图(4)估计一下全校课余爱好是阅读的学生约为3200×960(人)【点睛】本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键20、(1)坡底C点到大楼距离AC的值为20米;(2)斜坡CD的长度为80-120米.【解析】分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)过点D作DFAB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.详解:(1)在直角ABC中,BAC=90°,BCA=60°,AB=60米,则AC=(米)答:坡底C点到大楼距离AC的值是20米(2)过点D作DFAB于点F,则四边形AEDF为矩形,AF=DE,DF=AE.设CD=x米,在RtCDE中,DE=x米,CE=x米在RtBDF中,BDF=45°,BF=DF=AB-AF=60-x(米)DF=AE=AC+CE,20+x=60-x解得:x=80-120(米)故斜坡CD的长度为(80-120)米.点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键21、证明见解析.【解析】由1=2可得CAB =DAE,再根据ASA证明ABCAED,即可得出答案.【详解】1=2,1+BAD=2+BAD,CAB=DAE,在ABC与AED中,B=E,AB=AE,CAB=DAE,ABCAED,BC=ED.22、(I)(10,4)或(6,4)(II)C(6,2)(III)C(8,4)C(,)【解析】(I)如图,当OBAC,四边形OBCA是平行四边形,只要证明B、C、D共线即可解决问题,再根据对称性确定D的坐标;(II)如图,当=60°时,作CKAC于K解直角三角形求出OK,CK即可解决问题;(III)分两种情形分别求解即可解决问题;【详解】解:(I)如图,A(8,0),B(0,4),OB=4,OA=8,AC=OC=AC=4,当OBAC,四边形OBCA是平行四边形,AOB=90°,四边形OBCA是矩形,ACB=90°,ACD=90°,B、C、D共线,BDOA,AC=CO, BD=AD,CD=CD=OB=2,D(10,4),根据对称性可知,点D在线段BC上时,D(6,4)也满足条件综上所述,满足条件的点D坐标(10,4)或(6,4)(II)如图,当=60°时,作CKAC于K在RtACK中,KAC=60°,AC=4,AK=2,CK=2,OK=6,C(6,2)(III)如图中,当B、C、D共线时,由()可知,C(8,4)如图中,当B、C、D共线时,BD交OA于F,易证BOFACF,OF=FC,设OF=FC=x,在RtABC中,BC=8,在RTBOF中,OB=4,OF=x,BF=8x,(8x)2=42+x2,解得x=3,OF=FC=3,BF=5,作CKOA于K,OBKC,=,=,KC=,KF=,OK=,C(,)【点睛】本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题23、(1)证明见解析;(2)1【解析】(1)连结OA,由AC为圆的切线,利用切线的性质得到OAC为直角,再由,得到BOC为直角,由OA=OB得到,再利用对顶角相等及等角的余角相等得到,利用等角对等边即可得证;(2)在中,利用勾股定理即可求出OC,由OC=OD+DC,DC=AC,即可求得OD的长【详解】(1)如图,连接,切于,又,在中:,又,;(2)在中:, ,由勾股定理得:,由(1)得:,【点睛】此题考查了切线的性质、勾股定理、等腰三角形的判定与性质,熟练掌握切线的性质是解本题的关键24、 【解析】根据分式的减法和除法可以化简题目中的式子,然后从x的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题【详解】解:÷(x+1)=,当x=2时,原式= 【点睛】本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法