2022-2023学年山东省滨州市五校联考高三适应性调研考试数学试题含解析.doc
-
资源ID:87797482
资源大小:1.67MB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年山东省滨州市五校联考高三适应性调研考试数学试题含解析.doc
2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数(,为自然对数的底数),定义在上的函数满足,且当时,若存在,且为函数的一个零点,则实数的取值范围为( )ABCD2已知等差数列的前项和为,则( )A25B32C35D403已知集合,集合,则等于( )ABCD4函数在上的最大值和最小值分别为( )A,-2B,-9C-2,-9D2,-25若集合,则下列结论正确的是( )ABCD6已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、分别为侧棱,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为( )ABCD7设,是两条不同的直线,是两个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则;其中真命题的个数为( )ABCD8已知复数,(为虚数单位),若为纯虚数,则()AB2CD9据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是( )ACPI一篮子商品中所占权重最大的是居住BCPI一篮子商品中吃穿住所占权重超过50%C猪肉在CPI一篮子商品中所占权重约为2.5%D猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%10已知等差数列的前项和为,且,则( )A45B42C25D3611某几何体的三视图如右图所示,则该几何体的外接球表面积为( )ABCD12已知,若,则实数的值是()A-1B7C1D1或7二、填空题:本题共4小题,每小题5分,共20分。13已知,则_.(填“>”或“=”或“<”).14戊戌年结束,己亥年伊始,小康,小梁,小谭,小杨,小刘,小林六人分成四组,其中两个组各2人,另两个组各1人,分别奔赴四所不同的学校参加演讲,则不同的分配方案有_种(用数字作答),15的展开式中,的系数为_.16已知函数,则_;满足的的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在极坐标系中,已知曲线C的方程为(),直线l的方程为.设直线l与曲线C相交于A,B两点,且,求r的值.18(12分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由19(12分)已知的内角,的对边分别为,(1)若,证明:(2)若,求的面积20(12分)已知椭圆的离心率为,点在椭圆上.()求椭圆的标准方程;()设直线交椭圆于两点,线段的中点在直线上,求证:线段的中垂线恒过定点.21(12分)已知函数.(1)若对任意x0,f(x)0恒成立,求实数a的取值范围;(2)若函数f(x)有两个不同的零点x1,x2(x1x2),证明:.22(10分)如图,在正四棱锥中,点、分别在线段、上,(1)若,求证:;(2)若二面角的大小为,求线段的长参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,所以在上单调递减,所以在R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,所以函数在时单调递减,由选项知,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.【点睛】本题主要考查函数与方程的综合问题,难度较大.2、C【解析】设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得【详解】设等差数列的首项为,公差为,则,解得,即有故选:C【点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题3、B【解析】求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.4、B【解析】由函数解析式中含绝对值,所以去绝对值并画出函数图象,结合图象即可求得在上的最大值和最小值.【详解】依题意,作出函数的图象如下所示;由函数图像可知,当时,有最大值,当时,有最小值.故选:B.【点睛】本题考查了绝对值函数图象的画法,由函数图象求函数的最值,属于基础题.5、D【解析】由题意,分析即得解【详解】由题意,故,故选:D【点睛】本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题.6、D【解析】如图,平面截球所得截面的图形为圆面,计算,由勾股定理解得,此外接球的体积为,三棱锥体积为,得到答案.【详解】如图,平面截球所得截面的图形为圆面.正三棱锥中,过作底面的垂线,垂足为,与平面交点记为,连接、.依题意,所以,设球的半径为,在中,由勾股定理:,解得,此外接球的体积为,由于平面平面,所以平面,球心到平面的距离为,则,所以三棱锥体积为,所以此外接球的体积与三棱锥体积比值为.故选:D.【点睛】本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力.7、C【解析】利用线线、线面、面面相应的判定与性质来解决.【详解】如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知正确;当直线平行于平面与平面的交线时也有,故错误;若,则垂直平面内以及与平面平行的所有直线,故正确;若,则存在直线且,因为,所以,从而,故正确.故选:C.【点睛】本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.8、C【解析】把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可【详解】,为纯虚数,解得故选C【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题9、D【解析】A.从第一个图观察居住占23%,与其他比较即可. B. CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,再判断.C.食品占19.9%,再看第二个图,分清2.5%是在CPI一篮子商品中,还是在食品中即可.D. 易知猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%.【详解】A. CPI一篮子商品中居住占23%,所占权重最大的,故正确.B. CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,权重超过50%,故正确.C.食品占中19.9%,分解后后可知猪肉是占在CPI一篮子商品中所占权重约为2.5%,故正确.D. 猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%,故错误.故选:D【点睛】本题主要考查统计图的识别与应用,还考查了理解辨析的能力,属于基础题.10、D【解析】由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【详解】由题,.故选:D【点睛】本题考查等差数列的性质,考查等差数列的前项和.11、A【解析】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,底面为等腰直角三角形,斜边长为,如图:的外接圆的圆心为斜边的中点,且平面,的中点为外接球的球心,半径,外接球表面积故选:A【点睛】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键12、C【解析】根据平面向量数量积的坐标运算,化简即可求得的值.【详解】由平面向量数量积的坐标运算,代入化简可得.解得.故选:C.【点睛】本题考查了平面向量数量积的坐标运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】注意到,故只需比较与1的大小即可.【详解】由已知,故有.又由,故有.故答案为:.【点睛】本题考查对数式比较大小,涉及到换底公式的应用,考查学生的数学运算能力,是一道中档题.14、1080【解析】按照先分组,再分配的分式,先将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,然后用分步计数原理求解.【详解】将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,则不同的分配方案有种.故答案为:1080【点睛】本题主要考查分组分配问题,还考查了理解辨析的能力,属于中档题.15、16【解析】要得到的系数,只要求出二项式中的系数减去的系数的2倍即可【详解】的系数为.故答案为:16【点睛】此题考查二项式的系数,属于基础题.16、 【解析】首先由分段函数的解析式代入求值即可得到,分和两种情况讨论可得;【详解】解:因为,所以,当时,满足题意,;当时,由,解得.综合可知:满足的的取值范围为.故答案为:;.【点睛】本题考查分段函数的性质的应用,分类讨论思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】先将曲线C和直线l的极坐标方程化为直角坐标方程,可得圆心到直线的距离,再由勾股定理,计算即得.【详解】以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,可得曲线C:()的直角坐标方程为,表示以原点为圆心,半径为r的圆.由直线l的方程,化简得,则直线l的直角坐标方程方程为.记圆心到直线l的距离为d,则,又,即,所以.【点睛】本题考查曲线和直线的极坐标方程化为直角坐标方程,是基础题.18、(1); (2)见解析.【解析】(I)结合离心率,得到a,b,c的关系,计算A的坐标,计算切线与椭圆交点坐标,代入椭圆方程,计算参数,即可(II)分切线斜率存在与不存在讨论,设出M,N的坐标,设出切线方程,结合圆心到切线距离公式,得到m,k的关系式,将直线方程代入椭圆方程,利用根与系数关系,表示,结合三角形相似,证明结论,即可【详解】()设椭圆的半焦距为,由椭圆的离心率为知,椭圆的方程可设为.易求得,点在椭圆上,解得,椭圆的方程为. ()当过点且与圆相切的切线斜率不存在时,不妨设切线方程为,由()知,.当过点且与圆相切的切线斜率存在时,可设切线的方程为,即.联立直线和椭圆的方程得,得.,.综上所述,圆上任意一点处的切线交椭圆于点,都有.在中,由与相似得,为定值.【点睛】本道题考查了椭圆方程的求解,考查了直线与椭圆位置关系,考查了向量的坐标运算,难度偏难19、(1)见解析(2)【解析】(1)由余弦定理及已知等式得出关系,再由正弦定理可得结论;(2)由余弦定理和已知条件解得,然后由面积公式计算【详解】解:(1)由余弦定理得,由得到,由正弦定理得因为,所以(2)由题意及余弦定理可知,由得,即,联立解得,所以【点睛】本题考查利用正余弦定理解三角形考查三角形面积公式,由已知条件本题主要是应用余弦定理求出边解题时要注意对条件的分析,确定选用的公式20、();()详见解析.【解析】()把点代入椭圆方程,结合离心率得到关于的方程,解方程即可;()联立直线与椭圆方程得到关于的一元二次方程,利用韦达定理和中垂线的定义求出线段的中垂线方程即可证明.【详解】()由已知椭圆过点得,又,得,所以,即椭圆方程为.()证明: 由,得,由,得,由韦达定理可得,设的中点为,得,即,的中垂线方程为,即,故得中垂线恒过点.【点睛】本题考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系及椭圆中的定值问题;考查运算求解能力和知识的综合运用能力;正确求出椭圆方程和利用中垂线的定义正确表示出中垂线方程是求解本题的关键;属于中档题.21、(1);(2)证明见解析.【解析】(1)求出,判断函数的单调性,求出函数的最大值,即求的范围;(2)由(1)可知, .对分和两种情况讨论,构造函数,利用放缩法和基本不等式证明结论【详解】(1)由,得.令.当时,;当时,;在上单调递增,在上单调递减,.对任意恒成立,.(2)证明:由(1)可知,在上单调递增,在上单调递减,.若,则,令在上单调递增,.又,在上单调递减,.若,则显然成立.综上,.又以上两式左右两端分别相加,得,即,所以.【点睛】本题考查利用导数解决不等式恒成立问题,利用导数证明不等式,属于难题.22、(1)证明见解析;(2)【解析】试题分析:由于图形是正四棱锥,因此设AC、BD交点为O,则以OA为x轴正方向,以OB为y轴正方向,OP为z轴正方向建立空间直角坐标系,可用空间向量法解决问题(1)只要证明0即可证明垂直;(2)设,得M(,0,1),然后求出平面MBD的法向量,而平面ABD的法向量为,利用法向量夹角与二面角相等或互补可求得试题解析: (1)连结AC、BD交于点O,以OA为x轴正方向,以OB为y轴正方向,OP为z轴正方向建立空间直角坐标系因为PAAB,则A(1,0,0),B(0,1,0),D(0,1,0),P(0,0,1)由,得N,由,得M,所以,(1,1,0)因为0,所以MNAD(2) 解:因为M在PA上,可设,得M(,0,1)所以(,1,1),(0,2,0)设平面MBD的法向量(x,y,z),由,得其中一组解为x1,y0,z,所以可取(1,0,)因为平面ABD的法向量为(0,0,1),所以cos,即,解得,从而M,N,所以MN 考点:用空间向量法证垂直、求二面角