2022-2023学年山西省长治市市级名校中考数学押题试卷含解析.doc
-
资源ID:87797494
资源大小:796KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年山西省长治市市级名校中考数学押题试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列计算正确的是( )A(a3)2a26a9B(a3)(a3)a29C(ab)2a2b2D(ab)2a2a22一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )A20B24C28D303菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A3.5B4C7D144如图,在O中,弦AB=CD,ABCD于点E,已知CEED=3,BE=1,则O的直径是()A2BC2D55如图是一个正方体展开图,把展开图折叠成正方体后,“爱”字一面相对面上的字是()A美B丽C泗D阳6观察下列图形,则第n个图形中三角形的个数是()A2n+2B4n+4C4n4D4n7如图所示的两个四边形相似,则的度数是()A60°B75°C87°D120°8用加减法解方程组时,如果消去y,最简捷的方法是()A×4×3B×4+×3C×2D×2+9小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A30和 20 B30和25 C30和22.5 D30和17.510已知M9x24x3,N5x24x2,则M与N的大小关系是( )AM>NBMNCM<ND不能确定11花园甜瓜是乐陵的特色时令水果甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为()kgA180B200C240D30012下列命题中真命题是( )A若a2=b2,则a=b B4的平方根是±2C两个锐角之和一定是钝角 D相等的两个角是对顶角二、填空题:(本大题共6个小题,每小题4分,共24分)13计算:|5|=_14已知点A(x1,y1),B(x2,y2)在直线ykxb上,且直线经过第一、三、四象限,当x1x2时,y1与y2的大小关系为_15因式分解:(a+1)(a1)2a+2_16如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_17已知点、都在反比例函数的图象上,若,则k的值可以取_写出一个符合条件的k值即可18|-3|=_;三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知抛物线y=x26x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D(1)求抛物线的顶点C的坐标及A,B两点的坐标;(2)将抛物线y=x26x+9向上平移1个单位长度,再向左平移t(t0)个单位长度得到新抛物线,若新抛物线的顶点E在DAC内,求t的取值范围;(3)点P(m,n)(3m1)是抛物线y=x26x+9上一点,当PAB的面积是ABC面积的2倍时,求m,n的值20(6分)如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD,等边ABE,已知BAC=30°,EFAB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形21(6分)在正方形ABCD中,AB4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PMPB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm012345y/cm6.04.84.56.07.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PMPB的长度最小值约为_cm.22(8分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知购买4个B种品牌的足球与购买5个A种品牌的足球费用相同(1)求购买一个A种品牌、一个B种品牌的足球各需多少元(2)学校为了响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共42个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高5元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的80%,且保证这次购买的B种品牌足球不少于20个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?23(8分)如图,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,C=90°,EG=4cm,EGF=90°,O是EFG斜边上的中点如图,若整个EFG从图的位置出发,以1cm/s的速度沿射线AB方向平移,在EFG平移的同时,点P从EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,EFG也随之停止平移设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况)(1)当x为何值时,OPAC;(2)求y与x之间的函数关系式,并确定自变量x的取值范围;(3)是否存在某一时刻,使四边形OAHP面积与ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)24(10分)如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为,P是半径OB上一动点,Q是上的一动点,连接PQ(1)当POQ 时,PQ有最大值,最大值为 ;(2)如图2,若P是OB中点,且QPOB于点P,求的长;(3)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B恰好落在OA的延长线上,求阴影部分面积25(10分)如图,ABC中,AB=AC,以AB为直径的O与BC相交于点D,与CA的延长线相交于点E,过点D作DFAC于点F(1)试说明DF是O的切线;(2)若AC=3AE,求tanC26(12分)在平面直角坐标系中,已知直线yx+4和点M(3,2)(1)判断点M是否在直线yx+4上,并说明理由;(2)将直线yx+4沿y轴平移,当它经过M关于坐标轴的对称点时,求平移的距离;(3)另一条直线ykx+b经过点M且与直线yx+4交点的横坐标为n,当ykx+b随x的增大而增大时,则n取值范围是_27(12分)在平面直角坐标系xOy中,一次函数的图象与y轴交于点,与反比例函数 的图象交于点求反比例函数的表达式和一次函数表达式;若点C是y轴上一点,且,直接写出点C的坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】利用完全平方公式及平方差公式计算即可【详解】解:A、原式=a2-6a+9,本选项错误;B、原式=a2-9,本选项正确;C、原式=a2-2ab+b2,本选项错误;D、原式=a2+2ab+b2,本选项错误,故选:B【点睛】本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键2、D【解析】试题解析:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球故选D考点:利用频率估计概率3、A【解析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OHAB【详解】菱形ABCD的周长为28,AB=28÷4=7,OB=ODH为AD边中点,OH是ABD的中位线,OHAB7=3.1故选A【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键4、C【解析】作OHAB于H,OGCD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可【详解】解:作OHAB于H,OGCD于G,连接OA,由相交弦定理得,CEED=EABE,即EA×1=3,解得,AE=3,AB=4,OHAB,AH=HB=2,AB=CD,CEED=3,CD=4,OGCD,EG=1,由题意得,四边形HEGO是矩形,OH=EG=1,由勾股定理得,OA=,O的直径为,故选C【点睛】此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键5、D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”字一面相对面上的字是“阳”;故本题答案为:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形是解题的关键6、D【解析】试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n故选D考点:规律型:图形的变化类7、C【解析】【分析】根据相似多边形性质:对应角相等.【详解】由已知可得:的度数是:360-60-75-138=87故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.8、D【解析】试题解析:用加减法解方程组 时,如果消去y,最简捷的方法是×2+,故选D.9、C【解析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为=22.5,故选:C【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错10、A【解析】若比较M,N的大小关系,只需计算M-N的值即可【详解】解:M9x24x3,N5x24x2,M-N=(9x24x3)-(5x24x2)=4(x-1)2+10,M>N故选A【点睛】本题的主要考查了比较代数式的大小,可以让两者相减再分析情况11、B【解析】根据题意去设所进乌梅的数量为,根据前后一共获利元,列出方程,求出x值即可.【详解】解:设小李所进甜瓜的数量为,根据题意得:,解得:,经检验是原方程的解答:小李所进甜瓜的数量为200kg故选:B【点睛】本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.12、B【解析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】分析:直接利用二次根式以及绝对值的性质分别化简得出答案详解:原式=5-3=1故答案为1.点睛:此题主要考查了实数运算,正确化简各数是解题关键14、y1<y1【解析】直接利用一次函数的性质分析得出答案【详解】解:直线经过第一、三、四象限,y随x的增大而增大,x1x1,y1与y1的大小关系为:y1y1故答案为:y1<y1【点睛】此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键15、(a1)1【解析】提取公因式(a1),进而分解因式得出答案【详解】解:(a+1)(a1)1a+1(a+1)(a1)1(a1)(a1)(a+11)(a1)1故答案为:(a1)1【点睛】此题主要考查了提取公因式法分解因式,找出公因式是解题关键16、【解析】解:如图,作OHDK于H,连接OK,以AD为直径的半圆,正好与对边BC相切,AD=2CD根据折叠对称的性质,A'D=2CDC=90°,DA'C=30°ODH=30°DOH=60°DOK=120°扇形ODK的面积为ODH=OKH=30°,OD=3cm,ODK的面积为半圆还露在外面的部分(阴影部分)的面积是:故答案为:17、-1【解析】利用反比例函数的性质,即可得到反比例函数图象在第一、三象限,进而得出,据此可得k的取值【详解】解:点、都在反比例函数的图象上,在每个象限内,y随着x的增大而增大,反比例函数图象在第一、三象限,的值可以取等,答案不唯一故答案为:【点睛】本题考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答18、1【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案解答:解:|-1|=1故答案为1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)C(2,0),A(1,4),B(1,9);(2)t5;(2)m=,n=.【解析】分析:()将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标 ()由题意可知:新抛物线的顶点坐标为(2t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在DAC内,求t的取值范围 ()直线AB与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),易得CFAB,PAB的面积是ABC面积的2倍,所以ABPM=ABCF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n(m+2),所以n=m+4,由于P(m,n)在抛物线y=x21x+9上,联立方程从而可求出m、n的值详解:(I)y=x21x+9=(x2)2,顶点坐标为(2,0) 联立, 解得:或; (II)由题意可知:新抛物线的顶点坐标为(2t,1),设直线AC的解析式为y=kx+b 将A(1,4),C(2,0)代入y=kx+b中, 解得:, 直线AC的解析式为y=2x+1 当点E在直线AC上时,2(2t)+1=1,解得:t= 当点E在直线AD上时,(2t)+2=1,解得:t=5,当点E在DAC内时,t5; (III)如图,直线AB与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),OD=OF=2 FOD=90°,OFD=ODF=45° OC=OF=2,FOC=90°,CF=2,OFC=OCF=45°, DFC=DFO+OFC=45°+45°=90°,CFAB PAB的面积是ABC面积的2倍,ABPM=ABCF, PM=2CF=1 PNx轴,FDO=45°,DGN=45°,PGM=45°在RtPGM中,sinPGM=, PG=3 点G在直线y=x+2上,P(m,n), G(m,m+2) 2m1,点P在点G的上方,PG=n(m+2),n=m+4 P(m,n)在抛物线y=x21x+9上,m21m+9=n,m21m+9=m+4,解得:m= 2m1,m=不合题意,舍去,m=,n=m+4= 点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识20、证明见解析【解析】(1)一方面RtABC中,由BAC=30°可以得到AB=2BC,另一方面ABE是等边三角形,EFAB,由此得到AE=2AF,并且AB=2AF,从而可证明AFEBCA,再根据全等三角形的性质即可证明AC=EF(2)根据(1)知道EF=AC,而ACD是等边三角形,所以EF=AC=AD,并且ADAB,而EFAB,由此得到EFAD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形【详解】证明:(1)RtABC中,BAC=30°,AB=2BC又ABE是等边三角形,EFAB,AB=2AFAF=BC在RtAFE和RtBCA中,AF=BC,AE=BA,AFEBCA(HL)AC=EF(2)ACD是等边三角形,DAC=60°,AC=ADDAB=DAC+BAC=90°EFADAC=EF,AC=AD,EF=AD四边形ADFE是平行四边形考点:1全等三角形的判定与性质;2等边三角形的性质;3平行四边形的判定21、(1)2.1;(2)见解析;(3)x2时,函数有最小值y4.2【解析】(1)通过作辅助线,应用三角函数可求得HM+HN的值即为x=2时,y的值;(2)可在网格图中直接画出函数图象;(3)由函数图象可知函数的最小值【详解】(1)当点P运动到点H时,AH=3,作HNAB于点N在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,HAN=42°,AN=HN=AHsin42°=3,HM,HB,HM+HN=2.122+2.8342.1故答案为:2.1;(2)(3)根据函数图象可知,当x=2时,函数有最小值y=4.2故答案为:4.2【点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答22、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,具体见解析;(3)3150元【解析】试题分析:(1)、设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据题意列出二元一次方程组,从而求出x和y的值得出答案;(2)、设第二次购买A种足球m个,则购买B种足球(50m)个,根据题意列出不等式组求出m的取值范围,从而得出答案;(3)、分别求出第二次购买时足球的单件,然后得出答案.试题解析:(1) 设A种品牌足球的单价为x元,B种品牌足球的单价为y元,解得 (2) 设第二次购买A种足球m个,则购买B种足球(50m)个,解得25m27m为整数 m25、26、27(3) 第二次购买足球时,A种足球单价为50454(元),B种足球单价为80×0.972当购买B种足球越多时,费用越高 此时25×5425×723150(元)23、(1)1.5s;(2)S=x2+x+3(0x3);(3)当x=(s)时,四边形OAHP面积与ABC面积的比为13:1【解析】(1)由于O是EF中点,因此当P为FG中点时,OPEGAC,据此可求出x的值(2)由于四边形AHPO形状不规则,可根据三角形AFH和三角形OPF的面积差来得出四边形AHPO的面积三角形AHF中,AH的长可用AF的长和FAH的余弦值求出,同理可求出FH的表达式(也可用相似三角形来得出AH、FH的长)三角形OFP中,可过O作ODFP于D,PF的长易知,而OD的长,可根据OF的长和FOD的余弦值得出由此可求得y、x的函数关系式(3)先求出三角形ABC和四边形OAHP的面积,然后将其代入(2)的函数式中即可得出x的值【详解】解:(1)RtEFGRtABC,即,FG=3cm当P为FG的中点时,OPEG,EGACOPACx=×3=1.5(s)当x为1.5s时,OPAC(2)在RtEFG中,由勾股定理得EF=5cmEGAHEFGAFH,AH=(x+5),FH=(x+5)过点O作ODFP,垂足为D点O为EF中点OD=EG=2cmFP=3xS四边形OAHP=SAFHSOFP=AHFHODFP=(x+5)(x+5)×2×(3x)=x2+x+3(0x3)(3)假设存在某一时刻x,使得四边形OAHP面积与ABC面积的比为13:1则S四边形OAHP=×SABCx2+x+3=××6×86x2+85x250=0解得x1=,x2=(舍去)0x3当x=(s)时,四边形OAHP面积与ABC面积的比为13:1【点睛】本题是比较常规的动态几何压轴题,第1小题运用相似形的知识容易解决,第2小题同样是用相似三角形建立起函数解析式,要说的是本题中说明了要写出自变量x的取值范围,而很多试题往往不写,要记住自变量x的取值范围是函数解析式不可分离的一部分,无论命题者是否交待了都必须写,第3小题只要根据函数解析式列个方程就能解决24、(1);(2);(3)【解析】(1)先判断出当PQ取最大时,点Q与点A重合,点P与点B重合,即可得出结论;(2)先判断出POQ60°,最后用弧长用弧长公式即可得出结论;(3)先在RtB'OP中,OP2+ ,解得OP ,最后用面积的和差即可得出结论【详解】解:(1)P是半径OB上一动点,Q是 上的一动点,当PQ取最大时,点Q与点A重合,点P与点B重合,此时,POQ90°,PQ , 故答案为:90°,10 ;(2)解:如图,连接OQ,点P是OB的中点,OPOB OQQPOB,OPQ90°在RtOPQ中,cosQOP ,QOP60°,lBQ ;(3)由折叠的性质可得, ,在RtB'OP中,OP2+ ,解得OP,S阴影S扇形AOB2SAOP.【点睛】此题是圆的综合题,主要考查了圆的性质,弧长公式,扇形的面积公式,熟记公式是解本题的关键25、(1)详见解析;(2)【解析】(1)连接OD,根据等边对等角得出B=ODB,B=C,得出ODB=C,证得ODAC,证得ODDF,从而证得DF是O的切线;(2)连接BE,AB是直径,AEB=90°,根据勾股定理得出BE=2AE,CE=4AE,然后在RtBEC中,即可求得tanC的值【详解】(1)连接OD,OB=OD,B=ODB,AB=AC,B=C,ODB=C,ODAC,DFAC,ODDF,DF是O的切线;(2)连接BE,AB是直径,AEB=90°,AB=AC,AC=3AE,AB=3AE,CE=4AE,BE=,在RTBEC中,tanC=26、(1)点M(1,2)不在直线y=x+4上,理由见解析;(2)平移的距离为1或2;(1)2n1【解析】(1)将x=1代入y=-x+4,求出y=-1+4=12,即可判断点M(1,2)不在直线y=-x+4上;(2)设直线y=-x+4沿y轴平移后的解析式为y=-x+4+b分两种情况进行讨论:点M(1,2)关于x轴的对称点为点M1(1,-2);点M(1,2)关于y轴的对称点为点M2(-1,2)分别求出b的值,得到平移的距离;(1)由直线y=kx+b经过点M(1,2),得到b=2-1k由直线y=kx+b与直线y=-x+4交点的横坐标为n,得出y=kn+b=-n+4,k=根据y=kx+b随x的增大而增大,得到k0,即0,那么,或,分别解不等式组即可求出n的取值范围【详解】(1)点M不在直线y=x+4上,理由如下:当x=1时,y=1+4=12,点M(1,2)不在直线y=x+4上;(2)设直线y=x+4沿y轴平移后的解析式为y=x+4+b点M(1,2)关于x轴的对称点为点M1(1,2),点M1(1,2)在直线y=x+4+b上,2=1+4+b,b=1,即平移的距离为1;点M(1,2)关于y轴的对称点为点M2(1,2),点M2(1,2)在直线y=x+4+b上,2=1+4+b,b=2,即平移的距离为2综上所述,平移的距离为1或2;(1)直线y=kx+b经过点M(1,2),2=1k+b,b=21k直线y=kx+b与直线y=x+4交点的横坐标为n,y=kn+b=n+4,kn+21k=n+4,k=y=kx+b随x的增大而增大,k0,即0,或,不等式组无解,不等式组的解集为2n1n的取值范围是2n1故答案为2n1【点睛】本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握27、(1)y=,y=-x+1;(2)C(0,3+1 )或C(0,1-3).【解析】(1)依据一次函数的图象与轴交于点,与反比例函数的图象交于点,即可得到反比例函数的表达式和一次函数表达式;(2)由,可得:,即可得到,再根据,可得或,即可得出点的坐标【详解】(1)双曲线过,将代入,解得:所求反比例函数表达式为:点,点在直线上,所求一次函数表达式为(2)由,可得:,又,或,或,【点睛】本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题此题难度适中,注意掌握数形结合思想的应用