2022-2023学年山西省八所重点中学高考仿真卷数学试卷含解析.doc
2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若双曲线的离心率,则该双曲线的焦点到其渐近线的距离为( )AB2CD12过点的直线与曲线交于两点,若,则直线的斜率为( )ABC或D或3已知,其中是虚数单位,则对应的点的坐标为( )ABCD4函数f(x)sin(wx)(w0,)的最小正周期是,若将该函数的图象向右平移个单位后得到的函数图象关于直线x对称,则函数f(x)的解析式为( )Af(x)sin(2x)Bf(x)sin(2x)Cf(x)sin(2x)Df(x)sin(2x)5一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是( )ABCD6某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( )A58厘米B63厘米C69厘米D76厘米7已知函数为奇函数,则( )AB1C2D38函数的图象可能是下列哪一个?( )ABCD9设直线过点,且与圆:相切于点,那么( )AB3CD110我国古代典籍周易用“卦”描述万物的变化每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“ ”如图就是一重卦在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是( )ABCD11在直角坐标系中,已知A(1,0),B(4,0),若直线x+my1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是( )AB3CD12已知函数,则下列判断错误的是( )A的最小正周期为B的值域为C的图象关于直线对称D的图象关于点对称二、填空题:本题共4小题,每小题5分,共20分。13已知函数,若在定义域内恒有,则实数的取值范围是_14若在上单调递减,则的取值范围是_15已知等比数列的前项和为,且,则_.16平面直角坐标系中,O为坐标原点,己知A(3,1),B(-1,3),若点C满足,其中,R,且+=1,则点C的轨迹方程为 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,设函数,.(1)若,求不等式的解集;(2)若函数的最小值为1,证明:.18(12分)已知an是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=1(I)求an的通项公式;()若数列bn满足:,求bn的前n项和19(12分)已知直线与椭圆恰有一个公共点,与圆相交于两点. (I)求与的关系式;(II)点与点关于坐标原点对称.若当时,的面积取到最大值,求椭圆的离心率.20(12分)如图所示,在四棱锥中,底面为正方形,为的中点,为棱上的一点.(1)证明:面面;(2)当为中点时,求二面角余弦值.21(12分)已知函数 , (1)求函数的单调区间;(2)当时,判断函数,()有几个零点,并证明你的结论;(3)设函数,若函数在为增函数,求实数的取值范围22(10分)如图,在四棱锥中,.(1)证明:平面;(2)若,为线段上一点,且,求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据双曲线的解析式及离心率,可求得的值;得渐近线方程后,由点到直线距离公式即可求解.【详解】双曲线的离心率,则,解得,所以焦点坐标为,所以,则双曲线渐近线方程为,即,不妨取右焦点,则由点到直线距离公式可得,故选:C.【点睛】本题考查了双曲线的几何性质及简单应用,渐近线方程的求法,点到直线距离公式的简单应用,属于基础题.2、A【解析】利用切割线定理求得,利用勾股定理求得圆心到弦的距离,从而求得,结合,求得直线的倾斜角为,进而求得的斜率.【详解】曲线为圆的上半部分,圆心为,半径为.设与曲线相切于点,则所以到弦的距离为,所以,由于,所以直线的倾斜角为,斜率为.故选:A【点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.3、C【解析】利用复数相等的条件求得,则答案可求【详解】由,得,对应的点的坐标为,故选:【点睛】本题考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题4、D【解析】由函数的周期求得,再由平移后的函数图像关于直线对称,得到 ,由此求得满足条件的的值,即可求得答案.【详解】分析:由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.详解:因为函数的最小正周期是,所以,解得,所以,将该函数的图像向右平移个单位后,得到图像所对应的函数解析式为,由此函数图像关于直线对称,得:,即,取,得,满足,所以函数的解析式为,故选D.【点睛】本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力.5、D【解析】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线可解得【详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线方程得:,即,由得故选:【点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平6、B【解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【点睛】本题主要考查了扇形弧长的计算,属于容易题.7、B【解析】根据整体的奇偶性和部分的奇偶性,判断出的值.【详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.8、A【解析】由排除选项;排除选项;由函数有无数个零点,排除选项,从而可得结果.【详解】由,可排除选项,可排除选项;由可得,即函数有无数个零点,可排除选项,故选A.【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.9、B【解析】过点的直线与圆:相切于点,可得.因此,即可得出.【详解】由圆:配方为,半径.过点的直线与圆:相切于点,;故选:B.【点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.10、C【解析】利用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即可.【详解】设“该重卦至少有2个阳爻”为事件.所有“重卦”共有种;“该重卦至少有2个阳爻”的对立事件是“该重卦没有阳爻或只有1个阳爻”,其中,没有阳爻(即6个全部是阴爻)的情况有1种,只有1个阳爻的情况有种,故,所以该重卦至少有2个阳爻的概率是.故选:C【点睛】本题主要考查了对立事件概率和为1的方法求解事件概率的方法.属于基础题.11、D【解析】设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值.【详解】由题意,设点.,即,整理得,则,解得或.故选:.【点睛】本题考查直线与方程,考查平面内两点间距离公式,属于中档题.12、D【解析】先将函数化为,再由三角函数的性质,逐项判断,即可得出结果.【详解】可得对于A,的最小正周期为,故A正确;对于B,由,可得,故B正确;对于C,正弦函数对称轴可得:解得:,当,故C正确;对于D,正弦函数对称中心的横坐标为:解得:若图象关于点对称,则解得:,故D错误;故选:D.【点睛】本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,考查了分析能力和计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据指数函数与对数函数图象可将原题转化为恒成立问题,凑而可知的图象在过原点且与两函数相切的两条切线之间;利用过一点的曲线切线的求法可求得两切线斜率,结合分母不为零的条件可最终确定的取值范围.【详解】由指数函数与对数函数图象可知:,恒成立可转化为恒成立,即恒成立,即是夹在函数与的图象之间,的图象在过原点且与两函数相切的两条切线之间.设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;当时,又,满足题意;综上所述:实数的取值范围为.【点睛】本题考查恒成立问题的求解,重点考查了导数几何意义应用中的过一点的曲线切线的求解方法;关键是能够结合指数函数和对数函数图象将问题转化为切线斜率的求解问题;易错点是忽略分母不为零的限制,忽略对于临界值能否取得的讨论.14、【解析】由题意可得导数在恒成立,解出即可【详解】解:由题意,当时,显然,符合题意;当时,在恒成立,故答案为:【点睛】本题主要考查利用导数研究函数的单调性,属于中档题15、【解析】由题意知,继而利用等比数列的前项和为的公式代入求值即可.【详解】解:由题意知,所以.故答案为:.【点睛】本题考查了等比数列的通项公式和求和公式,属于中档题.16、【解析】根据向量共线定理得A,B,C三点共线,再根据点斜式得结果【详解】因为,且+=1,所以A,B,C三点共线,因此点C的轨迹为直线AB:【点睛】本题考查向量共线定理以及直线点斜式方程,考查基本分析求解能力,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析【解析】(1)利用零点分段法,求出各段的取值范围然后取并集可得结果.(2)利用绝对值三角不等式可得,然后使用柯西不等式可得结果.【详解】(1)由,所以由当时,则所以当时,则当时,则综上所述:(2)由当且仅当时取等号所以由,所以所以令根据柯西不等式,则当且仅当,即取等号由故,又则【点睛】本题考查使用零点分段法求解绝对值不等式以及柯西不等式的应用,属基础题.18、(I);()【解析】()设等差数列的公差为,则依题设由,可得由,得,可得所以可得()设,则.即,可得,且所以,可知所以,所以数列是首项为4,公比为2的等比数列所以前项和考点:等差数列通项公式、用数列前项和求数列通项公式19、()(II)【解析】(I)联立直线与椭圆的方程,根据判别式等于0,即可求出结果;()因点与点关于坐标原点对称,可得的面积是的面积的两倍,再由当时,的面积取到最大值,可得,进而可得原点到直线的距离,再由点到直线的距离公式,以及(I)的结果,即可求解.【详解】(I)由,得,则 化简整理,得; ()因点与点关于坐标原点对称,故的面积是的面积的两倍.所以当时,的面积取到最大值,此时,从而原点到直线的距离, 又,故. 再由(I),得,则. 又,故,即, 从而,即.【点睛】本题主要考查直线与椭圆的位置关系,以及椭圆的简单性质,通常需要联立直线与椭圆方程,结合韦达定理、判别式等求解,属于中档试题.20、(1)证明见解析;(2).【解析】(1)要证明面面,只需证明面即可;(2)以为坐标原点,以,分别为,轴建系,分别计算出面法向量,面的法向量,再利用公式计算即可.【详解】证明:(1)因为底面为正方形,所以又因为,满足,所以又,面,面,所以面.又因为面,所以,面面.(2)由(1)知,两两垂直,以为坐标原点,以,分别为,轴建系如图所示,则,,,则,.所以,设面法向量为,则由得,令得,即;同理,设面的法向量为,则由得,令得,即,所以,设二面角的大小为,则所以二面角余弦值为.【点睛】本题考查面面垂直的证明以及利用向量法求二面角,考查学生的运算求解能力,此类问题关键是准确写出点的坐标,是一道中档题.21、(1)单调增区间,单调减区间为,;(2)有2个零点,证明见解析;(3)【解析】对函数求导,利用导数的正负判断函数的单调区间即可;函数有2个零点.根据函数的零点存在性定理即可证明;记函数,求导后利用单调性求得,由零点存在性定理及单调性知存在唯一的,使,求得为分段函数,求导后分情况讨论:当时,利用函数的单调性将问题转化为的问题;当时,当时,在上恒成立,从而求得的取值范围.【详解】(1)由题意知,,列表如下:02 0 极小值 极大值 所以函数的单调增区间为,单调减区间为,. (2)函数有2个零点.证明如下: 因为时,所以,因为,所以在恒成立,在上单调递增,由,且在上单调递增且连续知,函数在上仅有一个零点,由(1)可得时,,即,故时,所以,由得,平方得,所以,因为,所以在上恒成立,所以函数在上单调递减,因为,所以,由,且在上单调递减且连续得在上仅有一个零点,综上可知:函数有2个零点. (3)记函数,下面考察的符号求导得当时恒成立当时,因为,所以在上恒成立,故在上单调递减,又因为在上连续,所以由函数的零点存在性定理得存在唯一的,使, ,因为,所以 因为函数在上单调递增,所以在,上恒成立当时,在上恒成立,即在上恒成立记,则,当变化时,变化情况如下表: 极小值 ,故,即当时,当时,在上恒成立综合(1)(2)知, 实数的取值范围是【点睛】本题考查利用导数求函数的单调区间、极值、最值和利用零点存在性定理判断函数零点个数、利用分离参数法求参数的取值范围;考查转化与化归能力、逻辑推理能力、运算求解能力;通过构造函数,利用零点存在性定理判断其零点,从而求出函数的表达式是求解本题的关键;属于综合型强、难度大型试题.22、(1)证明见解析(2)【解析】(1)利用线段长度得到与间的垂直关系,再根据线面垂直的判定定理完成证明;(2)以、为轴、轴、轴建立空间直角坐标系,利用直线的方向向量与平面的法向量夹角的余弦值的绝对值等于线面角的正弦值,计算出结果.【详解】(1),平面,平面(2)由(1)知,又为坐标原点,分别以、为轴、轴、轴建立空间直角坐标系,则,设是平面的一个法向量则,即,取得直线与平面所成的正弦值为【点睛】本题考查线面垂直的证明以及用向量法求解线面角的正弦,难度一般.用向量方法求解线面角的正弦值时,注意直线方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值.