2022-2023学年湖南省长沙市西雅中学中考数学模拟精编试卷含解析.doc
-
资源ID:87797601
资源大小:608KB
全文页数:14页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年湖南省长沙市西雅中学中考数学模拟精编试卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A3B4CD2如图:A、B、C、D四点在一条直线上,若ABCD,下列各式表示线段AC错误的是( )AACADCDBACAB+BCCACBDABDACADAB3将某不等式组的解集表示在数轴上,下列表示正确的是( )ABCD4某反比例函数的图象经过点(-2,3),则此函数图象也经过( )A(2,-3)B(-3,3)C(2,3)D(-4,6)5在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1那么在计算6×7时,左、右手伸出的手指数应该分别为( )A1,2B1,3C4,2D4,36在代数式 中,m的取值范围是()Am3Bm0Cm3Dm3且m07在ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是( )A5B7C9D118已知等边三角形的内切圆半径,外接圆半径和高的比是()A1:2:B2:3:4C1:2D1:2:39已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取( )A11;B6;C3;D110的倒数是( )AB-3C3D二、填空题(本大题共6个小题,每小题3分,共18分)11我们知道,四边形具有不稳定性如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为_12七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图所示是一副七巧板,若已知SBIC=1,据七巧板制作过程的认识,求出平行四边形EFGH_13计算(2a)3的结果等于_14一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_米15半径为2的圆中,60°的圆心角所对的弧的弧长为_.16函数的定义域是_.三、解答题(共8题,共72分)17(8分)先化简,再求值:,其中18(8分)已知线段a及如图形状的图案.(1)用直尺和圆规作出图中的图案,要求所作图案中圆的半径为a(保留作图痕迹)(2)当a=6时,求图案中阴影部分正六边形的面积.19(8分)在平面直角坐标系中,已知抛物线经过A(3,0),B(0,3),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标. 20(8分)如图,在ABC中,ABC=90°,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE(1)求证:四边形BCFE是平行四边形;(2)当ACB=60°时,求证:四边形BCFE是菱形21(8分)解不等式组,请结合题意填空,完成本题的解答(1)解不等式,得_;(2)解不等式,得_;(3)把不等式和的解集在数轴上表示出来;(4)原不等式组的解集为_22(10分)我国古代数学著作增删算法统宗记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹问官和兵各几人?23(12分)如图,菱形中,分别是边的中点求证:.24如图,已知O中,AB为弦,直线PO交O于点M、N,POAB于C,过点B作直径BD,连接AD、BM、AP(1)求证:PMAD;(2)若BAP=2M,求证:PA是O的切线;(3)若AD=6,tanM=,求O的直径参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】如图所示:过点O作ODAB于点D,OB=3,AB=4,ODAB,BD=AB=×4=2,在RtBOD中,OD=故选C2、C【解析】根据线段上的等量关系逐一判断即可.【详解】A、AD-CD=AC,此选项表示正确;B、AB+BC=AC,此选项表示正确;C、AB=CD,BD-AB=BD-CD,此选项表示不正确;D、AB=CD,AD-AB=AD-CD=AC,此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.3、B【解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“”,“”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左点睛:不等式组的解集为1x<3在数轴表示1和3以及两者之间的部分:故选B.点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,向右画;< ,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“”,“”要用实心圆点表示;“<”,“>”要用空心圆点表示.4、A【解析】设反比例函数y=(k为常数,k0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断【详解】设反比例函数y=(k为常数,k0),反比例函数的图象经过点(-2,3),k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,点(2,-3)在反比例函数y=- 的图象上故选A【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k5、A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A点评:此题是定义新运算题型通过阅读规则,得出一般结论解题关键是对号入座不要找错对应关系6、D【解析】根据二次根式有意义的条件即可求出答案【详解】由题意可知:解得:m3且m0故选D【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型7、B【解析】试题解析:D、E、F分别为AB、BC、AC中点,DF=BC=2,DFBC,EF=AB=,EFAB,四边形DBEF为平行四边形,四边形DBEF的周长=2(DF+EF)=2×(2+)=1故选B8、D【解析】试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角OCD中,DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1故选D考点:正多边形和圆9、D【解析】圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,当d>4+7或d<7-4时,这两个圆没有公共点,即d>11或d<3,上述四个数中,只有D选项中的1符合要求.故选D.点睛:两圆没有公共点,存在两种情况:(1)两圆外离,此时圆心距>两圆半径的和;(1)两圆内含,此时圆心距<大圆半径-小圆半径.10、A【解析】先求出,再求倒数.【详解】因为所以的倒数是故选A【点睛】考核知识点:绝对值,相反数,倒数.二、填空题(本大题共6个小题,每小题3分,共18分)11、(2,)【解析】过C作CH于H,由题意得2AO=AD,所以DAO=60°,AO=1,AD=2,勾股定理知OD=,BH=AO所以C(2,).故答案为(2,).12、1【解析】根据七巧板的性质可得BI=IC=CH=HE,因为SBIC=1,BIC=90°,可求得BI=IC=,BC=1,在求得点G到EF的距离为 sin45°,根据平行四边形的面积即可求解.【详解】由七巧板性质可知,BI=IC=CH=HE又SBIC=1,BIC=90°,BIIC=1,BI=IC=,BC=1,EF=BC=1,FG=EH=BI=,点G到EF的距离为:,平行四边形EFGH的面积=EF=1×=1故答案为1【点睛】本题考查了七巧板的性质、等腰直角三角形的性质及平行四边形的面积公式,熟知七巧板的性质是解决问题的关键.13、8【解析】试题分析:根据幂的乘方与积的乘方运算法则进行计算即可考点:(1)、幂的乘方;(2)、积的乘方14、1【解析】直接根据题意得出直角边的比值,即可表示出各边长进而得出答案【详解】如图所示:坡度i=1:0.75,AC:BC=1:0.75=4:3,设AC=4x,则BC=3x,AB=5x,AB=20m,5x=20,解得:x=4,故3x=1,故这个物体在水平方向上前进了1m故答案为:1【点睛】此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用表示坡角,可知坡度与坡角的关系是15、【解析】根据弧长公式可得:=,故答案为.16、x-1【解析】分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围详解:根据题意得:x+10,解得:x1 故答案为x1点睛:考查了函数的定义域,函数的定义域一般从三个方面考虑: (1)当函数表达式是整式时,定义域可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (1)当函数表达式是二次根式时,被开方数非负三、解答题(共8题,共72分)17、,【解析】先根据完全平方公式进行约分化简,再代入求值即可.【详解】原式,将a1代入得,原式,故答案为.【点睛】本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.18、(1)如图所示见解析,(2)当半径为6时,该正六边形的面积为【解析】试题分析:(1)先画一半径为a的圆,再作所画圆的六等分点,如图所示,连接所得六等分点,作出两个等边三角形即可;(2)如下图,连接OA、OB、OC、OD,作OEAB于点E,由已知条件先求出AB和OE的长,再求出CD的长,即可求得OCD的面积,这样即可由S阴影=6SOCD求出阴影部分的面积了.试题解析:(1)所作图形如下图所示:(2)如下图,连接OA、OB、OC、OD,作OEAB于点E,则由题意可得:OA=OB=6,AOB=120°,OEB=90°,AE=BE,BOC,AOD都是等腰三角形,OCD的三边三角形,ABO=30°,BC=OC=CD=AD,BE=OB·cos30°=,OE=3,AB=,CD=,SOCD=,S阴影=6SOCD=.19、(1) 时,S最大为(1)(1,1)或或或(1,1)【解析】试题分析:(1)先假设出函数解析式,利用三点法求解函数解析式(2)设出M点的坐标,利用S=SAOM+SOBMSAOB即可进行解答;(1)当OB是平行四边形的边时,表示出PQ的长,再根据平行四边形的对边相等列出方程求解即可;当OB是对角线时,由图可知点A与P应该重合,即可得出结论试题解析:解:(1)设此抛物线的函数解析式为:y=ax2+bx+c(a0),将A(1,0),B(0,1),C(1,0)三点代入函数解析式得:解得,所以此函数解析式为:(2)M点的横坐标为m,且点M在这条抛物线上,M点的坐标为:(m,),S=SAOM+SOBM-SAOB=×1×(-)+×1×(-m)-×1×1=-(m+)2+, 当m=-时,S有最大值为:S=-(1)设P(x,)分两种情况讨论:当OB为边时,根据平行四边形的性质知PBOQ,Q的横坐标的绝对值等于P的横坐标的绝对值,又直线的解析式为y=-x,则Q(x,-x)由PQ=OB,得:|-x-()|=1解得: x=0(不合题意,舍去),-1, ,Q的坐标为(1,1)或或;当BO为对角线时,如图,知A与P应该重合,OP=1四边形PBQO为平行四边形则BQ=OP=1,Q横坐标为1,代入y=x得出Q为(1,1)综上所述:Q的坐标为:(1,1)或或或(1,1)点睛:本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解20、(1)见解析;(2)见解析【解析】(1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形(2)根据菱形的判定证明即可【详解】(1)证明:DE为AB,AC中点DE为ABC的中位线,DE=BC,DEBC,即EFBC,EF=BC,四边形BCEF为平行四边形(2)四边形BCEF为平行四边形,ACB=60°,BC=CE=BE,四边形BCFE是菱形【点睛】本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型21、(1)x1;(1)x1;(3)答案见解析;(4)1x1【解析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集【详解】解:(1)解不等式,得x1;(1)解不等式,得 x1;(3)把不等式和的解集在数轴上表示出来:(4)原不等式组的解集为:1x1【点睛】本题考查了一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键22、官有200人,兵有800人【解析】设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论【详解】解:设官有x人,兵有y人,依题意,得: ,解得: 答:官有200人,兵有800人【点睛】本题主要考查二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.23、证明见解析.【解析】根据菱形的性质,先证明ABEADF,即可得解.【详解】在菱形ABCD中,ABBCCDAD,BD.点E,F分别是BC,CD边的中点,BEBC,DFCD,BEDF.ABEADF,AEAF.24、(1)证明见解析;(2)证明见解析;(3)1;【解析】(1)根据平行线的判定求出即可;(2)连接OA,求出OAP=BAP+OAB=BOC+OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=AD=3,求出x即可【详解】(1)BD是直径,DAB=90°,POAB,DAB=MCB=90°,PMAD;(2)连接OA,OB=OM,M=OBM,BON=2M,BAP=2M,BON=BAP,POAB,ACO=90°,AON+OAC=90°,OA=OB,BON=AON,BAP=AON,BAP+OAC=90°,OAP=90°,OA是半径,PA是O的切线;(3)连接BN,则MBN=90°tanM=,=,设BC=x,CM=2x,MN是O直径,NMAB,MBN=BCN=BCM=90°,NBC=M=90°BNC,MBCBNC,BC2=NC×MC,NC=x,MN=2x+x=2.1x,OM=MN=1.21x,OC=2x1.21x=0.71x,O是BD的中点,C是AB的中点,AD=6,OC=0.71x=AD=3,解得:x=4,MO=1.21x=1.21×4=1,O的半径为1【点睛】本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度