2022-2023学年福建省厦门市第六中学中考试题猜想数学试卷含解析.doc
-
资源ID:87797721
资源大小:630.50KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年福建省厦门市第六中学中考试题猜想数学试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,BD为O的直径,点A为弧BDC的中点,ABD35°,则DBC()A20°B35°C15°D45°2若关于x的一元二次方程x22xk0没有实数根,则k的取值范围是( )Ak1Bk1Ck1Dk13下列计算正确的是()A3a2a1Ba2+a5a7C(ab)3ab3Da2a4a64如图,ABC中,DEBC,AE2cm,则AC的长是()A2cmB4cmC6cmD8cm5观察下列图形,则第n个图形中三角形的个数是()A2n+2B4n+4C4n4D4n6如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()ABCD7计算-5+1的结果为( )A-6B-4C4D68下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是( )ABCD9点P(1,2)关于y轴对称的点的坐标是()A(1,2)B(1,2)C(1,2)D(2,1)10如图,将木条a,b与c钉在一起,1=70°,2=50°,要使木条a与b平行,木条a旋转的度数至少是()A10°B20°C50°D70°二、填空题(本大题共6个小题,每小题3分,共18分)11一次函数y=kx+b的图象如图所示,当y0时,x的取值范围是_12分解因式:3x2-6x+3=_13已知整数k5,若ABC的边长均满足关于x的方程,则ABC的周长是 14如图,O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为_ cm15如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP/AB,则AB的长等于_16若关于的一元二次方程有两个不相等的实数根,则的取值范围为_.三、解答题(共8题,共72分)17(8分)解不等式组:,并把解集在数轴上表示出来18(8分)如图,在ABCD中,DEAB,BFCD,垂足分别为E,F求证:ADECBF;求证:四边形BFDE为矩形19(8分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4)点A在DE上,以A为顶点的抛物线过点C,且对称轴x1交x轴于点B连接EC,AC点P,Q为动点,设运动时间为t秒(1)求抛物线的解析式(2)在图中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动当t为何值时,PCQ为直角三角形?(3)在图中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PFAB,交AC于点F,过点F作FGAD于点G,交抛物线于点Q,连接AQ,CQ当t为何值时,ACQ的面积最大?最大值是多少?20(8分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC求证:1=2;连结BE、DE,判断四边形BCDE的形状,并说明理由.21(8分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值22(10分) 如图,在平面直角坐标系中,抛物线yx2+bx+c(a0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(1,0),抛物线的对称轴直线x交x轴于点D(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角(0°90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由23(12分)如图1,图2、图m是边长均大于2的三角形、四边形、凸n边形分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧、n条弧(1)图1中3条弧的弧长的和为 ,图2中4条弧的弧长的和为 ;(2)求图m中n条弧的弧长的和(用n表示)24计算:_参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据ABD35°就可以求出的度数,再根据,可以求出 ,因此就可以求得的度数,从而求得DBC【详解】解:ABD35°,的度数都是70°,BD为直径,的度数是180°70°110°,点A为弧BDC的中点,的度数也是110°,的度数是110°+110°180°40°,DBC20°,故选:A【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力2、C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根3、D【解析】根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.【详解】3a2aa,选项A不正确;a2+a5a7,选项B不正确;(ab)3a3b3,选项C不正确;a2a4a6,选项D正确故选D【点睛】本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键.4、C【解析】由可得ADEABC,再根据相似三角形的性质即可求得结果.【详解】ADEABCAC=6cm故选C.考点:相似三角形的判定和性质点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.5、D【解析】试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n故选D考点:规律型:图形的变化类6、D【解析】根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形:几何体的左视图是:故选D.7、B【解析】根据有理数的加法法则计算即可【详解】解:-5+1=-(5-1)=-1故选B【点睛】本题考查了有理数的加法8、D【解析】A、根据函数的图象可知y随x的增大而增大,故本选项错误;B、根据函数的图象可知在第二象限内y随x的增大而减增大,故本选项错误;C、根据函数的图象可知,当x0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误;D、根据函数的图象可知,当x0时,y随x的增大而减小;故本选项正确故选 D【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.9、C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,2)关于y轴对称的点的坐标是(1,2),故选C【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.10、B【解析】要使木条a与b平行,那么1=2,从而可求出木条a至少旋转的度数.【详解】解:要使木条a与b平行,1=2,当1需变为50 º, 木条a至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补;夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题解析:根据图象和数据可知,当y>0即图象在x轴的上方,x>1故答案为x>112、3(x-1)2【解析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解【详解】.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止13、6或12或1【解析】根据题意得k0且(3)24×80,解得k.整数k5,k=4.方程变形为x26x+8=0,解得x1=2,x2=4.ABC的边长均满足关于x的方程x26x+8=0,ABC的边长为2、2、2或4、4、4或4、4、2.ABC的周长为6或12或1.考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用.【详解】请在此输入详解!14、1cm【解析】首先根据题意画出图形,然后连接OA,根据垂径定理得到OC平分AB,即AC=BC,而在RtOAC中,根据勾股数得到AC=4,这样即可得到AB的长【详解】解:如图,连接OA,则OA=5,OC=3,OCAB,AC=BC,在RtOAC中,AC=4,AB=2AC=1故答案为1 【点睛】本题考查垂径定理;勾股定理15、 【解析】设CD=AB=a,利用勾股定理可得到RtCDE中,DE2=CE2-CD2=1-2a2,RtDEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据DEPDAB,即可得到,即,可得,即可得到AB的长等于【详解】如图,设CD=AB=a,则BC2=BD2-CD2=1-a2,由折叠可得,CE=BC,BP=EP,CE2=1-a2,RtCDE中,DE2=CE2-CD2=1-2a2,PEAB,A=90°,PED=90°,RtDEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,PE=a2,PEAB,DEPDAB,即,即a2+a-1=0,解得(舍去),AB的长等于AB=.故答案为.16、.【解析】根据判别式的意义得到,然后解不等式即可.【详解】解:关于的一元二次方程有两个不相等的实数根,解得:,故答案为:.【点睛】此题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.三、解答题(共8题,共72分)17、则不等式组的解集是1x3,不等式组的解集在数轴上表示见解析.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集【详解】解不等式得:x1,解不等式得:x3,则不等式组的解集是:1x3,不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.18、(1)证明见解析;(2)证明见解析.【解析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到CDE为直角,利用三个角为直角的四边形为矩形即可的值【详解】解:(1)DEAB,BFCD,AED=CFB=90°,四边形ABCD为平行四边形,AD=BC,A=C,在ADE和CBF中,ADECBF(AAS);(2)四边形ABCD为平行四边形,CDAB,CDE+DEB=180°,DEB=90°,CDE=90°,CDE=DEB=BFD=90°,则四边形BFDE为矩形【点睛】本题考查1矩形的判定;2全等三角形的判定与性质;3平行四边形的性质19、(1)yx2+2x+3;(2)当t或t时,PCQ为直角三角形;(3)当t2时,ACQ的面积最大,最大值是1【解析】(1)根据抛物线的对称轴与矩形的性质可得点A的坐标,根据待定系数法可得抛物线的解析式;(2)先根据勾股定理可得CE,再分两种情况:当QPC90°时;当PQC90°时;讨论可得PCQ为直角三角形时t的值;(3)根据待定系数法可得直线AC的解析式,根据SACQSAFQ+SCPQ可得SACQ(t2)2+1,依此即可求解【详解】解:(1)抛物线的对称轴为x1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,点A坐标为(1,4),设抛物线的解析式为ya(x1)2+4,把C(3,0)代入抛物线的解析式,可得a(31)2+40,解得a1故抛物线的解析式为y(x1)2+4,即yx2+2x+3;(2)依题意有:OC3,OE4,CE5,当QPC90°时,cosQPC,解得t;当PQC90°时,cosQCP,解得t当t或 t时,PCQ为直角三角形;(3)A(1,4),C(3,0),设直线AC的解析式为ykx+b,则有:,解得故直线AC的解析式为y2x+2P(1,4t),将y4t代入y2x+2中,得x1+,Q点的横坐标为1+,将x1+ 代入y(x1)2+4 中,得y4Q点的纵坐标为4,QF(4)(4t)t,SACQ SAFQ +SCFQFQAG+FQDG,FQ(AG+DG),FQAD,×2(t),(t2)2+1,当t2时,ACQ的面积最大,最大值是1【点睛】考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,矩形的性质,待定系数法求抛物线的解析式,待定系数法求直线的解析式,勾股定理,锐角三角函数,三角形面积,二次函数的最值,方程思想以及分类思想的运用20、(1)证明见解析;(2)四边形BCDE是菱形,理由见解析.【解析】(1)证明ADCABC后利用全等三角形的对应角相等证得结论.(2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可【详解】解:(1)证明:在ADC和ABC中,ADCABC(SSS).1=2.(2)四边形BCDE是菱形,理由如下:如答图,1=2,DC=BC,AC垂直平分BD.OE=OC,四边形DEBC是平行四边形.ACBD,四边形DEBC是菱形【点睛】考点:1.全等三角形的判定和性质;2. 线段垂直平分线的性质;3.菱形的判定21、(1)y1=t(t30)(0t30);(2)y2=;(3)上市第20天,国内、外市场的日销售总量y最大,最大值为80万件【解析】(1)根据题意得出y1与t之间是二次函数关系,然后利用待定系数法求出函数解析式;(2)利用待定系数法分别求出两个函数解析式,从而得出答案;(3)分0t20、t=20和20t30三种情况根据y=y1+y2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最值【详解】解:(1)由图表数据观察可知y1与t之间是二次函数关系,设y1=a(t0)(t30) 再代入t=5,y1=25可得a=y1=t(t30)(0t30)(2)由函数图象可知y2与t之间是分段的一次函数由图象可知:0t20时,y2=2t,当20t30时,y2=4t+120,y2=,(3)当0t20时,y=y1+y2=t(t30)+2t=80(t20)2 , 可知抛物线开口向下,t的取值范围在对称轴左侧,y随t的增大而增大,所以最大值小于当t=20时的值80,当20t30时,y=y1+y2=t(t30)4t+120=125(t5)2 , 可知抛物线开口向下,t的取值范围在对称轴右侧,y随t的增大而减小,所以最大值为当t=20时的值80,故上市第20天,国内、外市场的日销售总量y最大,最大值为80万件22、(1) ;(1) ,E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5)【解析】(1)设B(x1,5),由已知条件得 ,进而得到B(2,5)又由对称轴求得b最终得到抛物线解析式.(1)先求出直线BC的解析式,再设E(m,m+1),F(m,m1+m+1)求得FE的值,得到SCBFm1+2m又由S四边形CDBFSCBF+SCDB,得S四边形CDBF最大值, 最终得到E点坐标(3)设N点为(n,n1+n+1),1n2过N作NOx轴于点P,得PGn1又由直角三角形的判定,得ABC为直角三角形,由ABCGNP, 得n1+或n1(舍去),求得P点坐标又由ABCGNP,且时,得n3或n2(舍去)求得P点坐标【详解】解:(1)设B(x1,5)由A(1,5),对称轴直线x 解得,x12B(2,5)又b抛物线解析式为y ,(1)如图1,B(2,5),C(5,1)直线BC的解析式为yx+1由E在直线BC上,则设E(m,m+1),F(m,m1+m+1)FEm1+m+1(n+1)m1+1m由SCBFEFOB,SCBF(m1+1m)×2m1+2m又SCDBBDOC×(2)×1 S四边形CDBFSCBF+SCDBm1+2m+化为顶点式得,S四边形CDBF(m1)1+ 当m1时,S四边形CDBF最大,为此时,E点坐标为(1,1)(3)存在如图1,由线段FG绕点G顺时针旋转一个角(5°95°),设N(n,n1+n+1),1n2过N作NOx轴于点P(n,5)NPn1+n+1,PGn1又在RtAOC中,AC1OA1+OC11+25,在RtBOC中,BC1OB1+OC116+215AB15115AC1+BC1AB1ABC为直角三角形当ABCGNP,且时,即, 整理得,n11n65解得,n1+ 或n1(舍去)此时P点坐标为(1+,5)当ABCGNP,且时,即, 整理得,n1+n115解得,n3或n2(舍去)此时P点坐标为(3,5)综上所述,满足题意的P点坐标可以为,(1+,5),(3,5)【点睛】本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.23、 (1), 2;(2)(n2)【解析】(1)利用弧长公式和三角形和四边形的内角和公式代入计算;(2)利用多边形的内角和公式和弧长公式计算【详解】(1)利用弧长公式可得,因为n1+n2+n3180°同理,四边形的2,因为四边形的内角和为360度;(2)n条弧(n2)【点睛】本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键24、1【解析】首先计算负整数指数幂和开平方,再计算减法即可【详解】解:原式931【点睛】此题主要考查了实数运算,关键是掌握负整数指数幂:为正整数)