2022-2023学年南京市联合体中考数学对点突破模拟试卷含解析.doc
-
资源ID:87797998
资源大小:985.50KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年南京市联合体中考数学对点突破模拟试卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()ABCD2如图所示的工件,其俯视图是()ABCD3如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为( )A6B8C10D124一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:abc<0;b2>4ac;4a+2b+c<0;2a+b=0.其中正确的结论有:A4个B3个C2个D1个5如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB1,点A在函数y(x0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y(x0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()ABCD6在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为( )ABCD7如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB100米,BC200米为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A点AB点BCA,B之间DB,C之间8方程的解为()Ax=1Bx=1Cx=2Dx=39计算8+3的结果是()A11B5C5D1110运用图形变化的方法研究下列问题:如图,AB是O的直径,CD,EF是O的弦,且ABCDEF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11函数y=中自变量x的取值范围是_12假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12108合计/kg小菲购买的数量/kg2226小琳购买的数量/kg1236从平均价格看,谁买得比较划算?( )A一样划算 B小菲划算C小琳划算 D无法比较13在实数范围内分解因式: =_14(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是_15甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是_(填“甲”或“乙”)16关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根是0,则k的值是_17如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么的正切值为_三、解答题(共7小题,满分69分)18(10分)如图,一次函数ykxb的图象与反比例函数的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OAOB(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y2xn于点M,交反比例函数的图象于点N,若NMNP,求n的值19(5分)在矩形ABCD中,两条对角线相交于O,AOB=60°,AB=2,求AD的长20(8分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式求机场大巴与货车相遇地到机场C的路程21(10分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PFy轴交抛物线于点F,连结DF设点P的横坐标为m(1)求此抛物线所对应的函数表达式(2)求PF的长度,用含m的代数式表示(3)当四边形PEDF为平行四边形时,求m的值22(10分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A由父母一方照看;B由爷爷奶奶照看;C由叔姨等近亲照看;D直接寄宿学校某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?23(12分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整)请根据统计图中的信息解答下列问题:本次抽查的样本容量是 ;在扇形统计图中,“主动质疑”对应的圆心角为 度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?24(14分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:请将条形统计图补全;获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D【详解】解:观察图形可知图案D通过平移后可以得到故选D【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转2、B【解析】试题分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选B点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线3、C【解析】连接AD,AM,由于ABC是等腰三角形,点D是BC的中点,故,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,推出,故AD的长为BM+MD的最小值,由此即可得出结论【详解】连接AD,MAABC是等腰三角形,点D是BC边上的中点 解得EF是线段AC的垂直平分线点A关于直线EF的对称点为点CAD的长为BM+MD的最小值CDM的周长最短 故选:C【点睛】本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键4、B【解析】试题解析:二次函数的图象的开口向下,a<0,二次函数的图象y轴的交点在y轴的正半轴上,c>0,二次函数图象的对称轴是直线x=1, 2a+b=0,b>0abc<0,故正确;抛物线与x轴有两个交点, 故正确;二次函数图象的对称轴是直线x=1,抛物线上x=0时的点与当x=2时的点对称,即当x=2时,y>04a+2b+c>0,故错误;二次函数图象的对称轴是直线x=1,2a+b=0,故正确综上所述,正确的结论有3个.故选B.5、C【解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论详解:OB=1,ABOB,点A在函数 (x<0)的图象上,当x=1时,y=2,A(1,2).此矩形向右平移3个单位长度到的位置,B1(2,0),A1(2,2).点A1在函数 (x>0)的图象上,k=4,反比例函数的解析式为,O1(3,0),C1O1x轴,当x=3时, P 故选C.点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.6、D【解析】先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可【详解】解:点M的坐标是(4,3),点M到x轴的距离是3,到y轴的距离是4,点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,r的取值范围是3r4,故选:D【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键7、A【解析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理【详解】解:以点A为停靠点,则所有人的路程的和15×100+10×3001(米),以点B为停靠点,则所有人的路程的和30×100+10×2005000(米),以点C为停靠点,则所有人的路程的和30×300+15×20012000(米),当在AB之间停靠时,设停靠点到A的距离是m,则(0m100),则所有人的路程的和是:30m+15(100m)+10(300m)1+5m1,当在BC之间停靠时,设停靠点到B的距离为n,则(0n200),则总路程为30(100+n)+15n+10(200n)5000+35n1该停靠点的位置应设在点A;故选A【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短8、B【解析】观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】方程的两边同乘(x3)(x+1),得(x2) (x+1)=x(x3),解得x=1.检验:把x=1代入(x3)(x+1)=-40.原方程的解为:x=1.故选B.【点睛】本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.9、B【解析】绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值互为相反数的两个数相加得1依此即可求解【详解】解:832故选B【点睛】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1从而确定用那一条法则在应用过程中,要牢记“先符号,后绝对值”10、A【解析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明SOCD=SACD,SOEF=SAEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解【详解】作直径CG,连接OD、OE、OF、DGCG是圆的直径,CDG=90°,则DG=8,又EF=8,DG=EF,S扇形ODG=S扇形OEF,ABCDEF,SOCD=SACD,SOEF=SAEF,S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=×52=,故选A【点睛】本题考查扇形面积的计算,圆周角定理本题中找出两个阴影部分面积之间的联系是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、x且x1【解析】根据分式有意义的条件、二次根式有意义的条件列式计算【详解】由题意得,2x+30,x-10,解得,x-且x1,故答案为:x-且x1【点睛】本题考查的是函数自变量的取值范围,当表达式的分母不含有自变量时,自变量取全体实数当表达式的分母中含有自变量时,自变量取值要使分母不为零当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零12、C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷613,则小琳划算考点:平均数的计算13、2(x+)(x-)【解析】先提取公因式2后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解【详解】2x2-6=2(x2-3)=2(x+)(x-)故答案为2(x+)(x-)【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止14、10,【解析】解:如图,过点A作ADBC于点D,ABC边AB=AC=10,BC=12,BD=DC=6,AD=8,如图所示:可得四边形ACBD是矩形,则其对角线长为:10;如图所示:AD=8,连接BC,过点C作CEBD于点E,则EC=8,BE=2BD=12,则BC=;如图所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC=故答案为10,15、甲【解析】由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S2甲<S2乙,即两人的成绩更加稳定的是甲故答案为甲16、2【解析】试题解析:由于关于x的一元二次方程的一个根是2,把x=2代入方程,得 ,解得,k2=2,k2=2当k=2时,由于二次项系数k2=2,方程不是关于x的二次方程,故k2所以k的值是2故答案为217、【解析】延长GF与CD交于点D,过点E作交DF于点M,设正方形的边长为,则解直角三角形可得,根据正切的定义即可求得的正切值【详解】延长GF与CD交于点D,过点E作交DF于点M, 设正方形的边长为,则, 故答案为:【点睛】考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.三、解答题(共7小题,满分69分)18、20(1)y2x5, y=;(2)n4或n1【解析】(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x-n可得答案【详解】解:(1)点A的坐标为(4,3),OA=5,OA=OB,OB=5,点B在y轴的负半轴上,点B的坐标为(0,-5),将点A(4,3)代入反比例函数解析式y=中,反比例函数解析式为y=,将点A(4,3)、B(0,-5)代入y=kx+b中,得:k=2、b=-5,一次函数解析式为y=2x-5;(2)由(1)知k=2,则点N的坐标为(2,6),NP=NM,点M坐标为(2,0)或(2,12),分别代入y=2x-n可得:n=-4或n=1【点睛】本题主要考查直线和双曲线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式及分类讨论思想的运用19、【解析】试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD,再由AOB=60°可得AOB是等边三角形,从而得到OB=OA=2,则BD=4,最后在RtABD中,由勾股定理可解得AD的长.试题解析:四边形ABCD是矩形,OA=OB=OD,BAD=90°,AOB=60°,AOB是等边三角形,OB=OA=2, BD=2OB=4,在RtABD中AD=.20、(1)连接A、B两市公路的路程为80km,货车由B市到达A市所需时间为h;(2)y=80x+60(0x);(3)机场大巴与货车相遇地到机场C的路程为km【解析】(1)根据可求出连接A、B两市公路的路程,再根据货车h行驶20km可求出货车行驶60km所需时间;(2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式;(3)利用待定系数法求出线段ED对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C的路程【详解】解:(1)60+20=80(km),(h)连接A. B两市公路的路程为80km,货车由B市到达A市所需时间为h(2)设所求函数表达式为y=kx+b(k0),将点(0,60)、代入y=kx+b,得: 解得: 机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式为(3)设线段ED对应的函数表达式为y=mx+n(m0)将点代入y=mx+n,得: 解得: 线段ED对应的函数表达式为解方程组得 机场大巴与货车相遇地到机场C的路程为km【点睛】本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心21、(1)y=-x2+2x+1;(2)-m2+1m(1)2.【解析】(1)根据待定系数法,可得函数解析式;(2)根据自变量与函数值的对应关系,可得C点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;(1)根据自变量与函数值的对应关系,可得F点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE的长,根据平行四边形的对边相等,可得关于m的方程,根据解方程,可得m的值【详解】解:(1)点A(-1,0),点B(1,0)在抛物线y=-x2+bx+c上,解得,此抛物线所对应的函数表达式y=-x2+2x+1;(2)此抛物线所对应的函数表达式y=-x2+2x+1,C(0,1)设BC所在的直线的函数解析式为y=kx+b,将B、C点的坐标代入函数解析式,得,解得,即BC的函数解析式为y=-x+1由P在BC上,F在抛物线上,得P(m,-m+1),F(m,-m2+2m+1)PF=-m2+2m+1-(-m+1)=-m2+1m(1)如图,此抛物线所对应的函数表达式y=-x2+2x+1,D(1,4)线段BC与抛物线的对称轴交于点E,当x=1时,y=-x+1=2,E(1,2),DE=4-2=2由四边形PEDF为平行四边形,得PF=DE,即-m2+1m=2,解得m1=1,m2=2当m=1时,线段PF与DE重合,m=1(不符合题意,舍)当m=2时,四边形PEDF为平行四边形考点:二次函数综合题22、(1)10,144;(2)详见解析;(3)96【解析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益【详解】解:(1)2÷20%10(人),×100%×360°144°,故答案为10,144;(2)102422(人),如图所示:(3)2400××20%96(人),答:估计该校将有96名留守学生在此关爱活动中受益【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据23、 (1)560;(2)54;(3)补图见解析;(4)18000人【解析】(1)本次调查的样本容量为224÷40%=560(人);(2)“主动质疑”所在的扇形的圆心角的度数是:360×84560=54º; (3)“讲解题目”的人数是:56084168224=84(人)(4)60000×=18000(人), 答:在课堂中能“独立思考”的学生约有18000人.24、(1)答案见解析;(2).【解析】【分析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;(2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.【详解】(1)10÷25%=40(人),获一等奖人数:40-8-6-12-10=4(人),补全条形图如图所示:(2)七年级获一等奖人数:4×=1(人),八年级获一等奖人数:4×=1(人), 九年级获一等奖人数:4-1-1=2(人),七年级获一等奖的同学用M表示,八年级获一等奖的同学用N表示,九年级获一等奖的同学用P1 、P2表示,树状图如下:共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,则所选出的两人中既有七年级又有九年级同学的概率P=.【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.