2022-2023学年拉萨市中考猜题数学试卷含解析.doc
-
资源ID:87798031
资源大小:647.50KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年拉萨市中考猜题数学试卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )ABCD2如图,O是ABC的外接圆,AD是O的直径,连接CD,若O的半径r=5,AC=5 ,则B的度数是( )A30° B45° C50° D60°3如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )ABCD4如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得CAD=60°,BCA=30°,AC=15 m,那么河AB宽为( )A15 mB mC mD m5如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律则第(6)个图形中面积为1的正方形的个数为( )A20B27C35D406函数y=中,x的取值范围是()Ax0Bx2Cx2Dx27如图,ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则ABO的周长是( )A10B14C20D228一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数从左面看到的这个几何体的形状图的是()ABCD9对于代数式ax2+bx+c(a0),下列说法正确的是( ) 如果存在两个实数pq,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)存在三个实数mns,使得am2+bm+c=an2+bn+c=as2+bs+c如果ac0,则一定存在两个实数mn,使am2+bm+c0an2+bn+c如果ac0,则一定存在两个实数mn,使am2+bm+c0an2+bn+cABCD10从3、1、2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11已知函数y=-1,给出一下结论:y的值随x的增大而减小此函数的图形与x轴的交点为(1,0)当x>0时,y的值随x的增大而越来越接近-1当x时,y的取值范围是y1以上结论正确的是_(填序号)12数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了海岛算经九题古证(以上材料来源于古证复原的原则吴文俊与中国数学和古代世界数学泰斗刘徽)请根据上图完成这个推论的证明过程证明:S矩形NFGDSADC(SANFSFGC),S矩形EBMFSABC(_)易知,SADCSABC,_,_可得S矩形NFGDS矩形EBMF.13如图,在ABCD中,AD=2,AB=4,A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是 (结果保留)14若不等式组有解,则m的取值范围是_15如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_ 16如图,是用火柴棒拼成的图形,则第n个图形需_根火柴棒17在我国著名的数学书九章算术中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为_三、解答题(共7小题,满分69分)18(10分)如图,已知AB是O的直径,CD与O相切于C,BECO(1)求证:BC是ABE的平分线;(2)若DC=8,O的半径OA=6,求CE的长19(5分)在RtABC中,BAC=,D是BC的中点,E是AD的中点过点A作AFBC交BE的延长线于点F求证:AEFDEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD 的面积20(8分)如图,在平面直角坐标系中,OAOB,ABx轴于点C,点A(,1)在反比例函数y的图象上(1)求反比例函数y的表达式;(2)在x轴上是否存在一点P,使得SAOPSAOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由21(10分)如图,直角坐标系中,M经过原点O(0,0),点A(,0)与点B(0,1),点D在劣弧OA上,连接BD交x轴于点C,且CODCBO(1)请直接写出M的直径,并求证BD平分ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与M相切,求此时点E的坐标22(10分)如图,已知AOB=45°,ABOB,OB=1(1)利用尺规作图:过点M作直线MNOB交AB于点N(不写作法,保留作图痕迹);(1)若M为AO的中点,求AM的长23(12分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线ADCB到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,A=45°,B=30°,桥DC和AB平行(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:1.14,1.73)24(14分)如图,菱形中,分别是边的中点求证:.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据轴对称图形与中心对称图形的概念求解【详解】A不是轴对称图形,也不是中心对称图形故错误;B不是轴对称图形,也不是中心对称图形故错误;C是轴对称图形,也是中心对称图形故正确;D不是轴对称图形,是中心对称图形故错误故选C【点睛】掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合2、D【解析】根据圆周角定理的推论,得B=D根据直径所对的圆周角是直角,得ACD=90°在直角三角形ACD中求出D 则sinD=D=60°B=D=60°故选D“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边3、C【解析】试题解析:四边形ABCD是平行四边形, 故选C.4、A【解析】过C作CEAB,RtACE中,CAD=60°,AC=15m,ACE=30°,AE=AC=×15=7.5m,CE=ACcos30°=15×=,BAC=30°,ACE=30°,BCE=60°,BE=CEtan60°=×=22.5m,AB=BEAE=22.57.5=15m,故选A【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案5、B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,按此规律,第n个图形中面积为1的正方形有2+3+4+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个故选B考点:规律型:图形变化类.6、D【解析】试题分析:由分式有意义的条件得出x+10,解得x1故选D点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键7、B【解析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案【详解】四边形ABCD是平行四边形,AO=CO,BO=DO,DC=AB=6,AC+BD=16,AO+BO=8,ABO的周长是:1故选B【点睛】平行四边形的性质掌握要熟练,找到等值代换即可求解8、B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1据此可画出图形详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B点睛:此题主要考查了几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字9、A【解析】设 (1)如果存在两个实数pq,使得ap2+bp+c=aq2+bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故中结论不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,则说明在中当x=m、n、s时,对应的y值相等,因此m、n、s中至少有两个数是相等的,故错误;(3)如果ac0,则b2-4ac>0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数mn,使am2+bm+c0an2+bn+c,故在结论正确;(4)如果ac0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以中结论不一定成立.综上所述,四种说法中正确的是.故选A.10、B【解析】解:画树状图得:共有6种等可能的结果,其中(1,2),(3,2)点落在第四项象限,P点刚好落在第四象限的概率=故选B点睛:本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】(1)因为函数的图象有两个分支,在每个分支上y随x的增大而减小,所以结论错误;(2)由解得:,的图象与x轴的交点为(1,0),故中结论正确;(3)由可知当x>0时,y的值随x的增大而越来越接近-1,故中结论正确;(4)因为在中,当时,故中结论错误;综上所述,正确的结论是.故答案为:.12、SAEF SFMC SANF SAEF SFGC SFMC 【解析】根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论【详解】S矩形NFGD=SADC-(SANF+SFGC),S矩形EBMF=SABC-( SANF+SFCM)易知,SADC=SABC,SANF=SAEF,SFGC=SFMC,可得S矩形NFGD=S矩形EBMF故答案分别为 SAEF,SFCM,SANF,SAEF,SFGC,SFMC【点睛】本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型13、【解析】过D点作DFAB于点FAD=1,AB=4,A=30°,DF=ADsin30°=1,EB=ABAE=1阴影部分的面积=平行四边形ABCD的面积扇形ADE面积三角形CBE的面积=.故答案为:.14、【解析】分析:解出不等式组的解集,然后根据解集的取值范围来确定m的取值范围解答:解:由1-x2得x-1又xm根据同大取大的原则可知:若不等式组的解集为x-1时,则m-1若不等式组的解集为xm时,则m-1故填m-1或m-1点评:本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知处理,求出解集再利用不等式组的解集的确定原则来确定未知数的取值范围15、【解析】根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积【详解】抛物线的对称轴为x=-抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BCx轴,点C的横坐标为-1四边形ABCD为菱形,AB=BC=AD=1,点D的坐标为(-2,0),OA=2在RtABC中,AB=1,OA=2,OB=4,S菱形ABCD=ADOB=1×4=3故答案为3【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键16、2n+1【解析】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n1)=2n+1故答案为:2n+117、【解析】设羊价为x钱,根据题意可得合伙的人数为或,由合伙人数不变可得方程【详解】设羊价为x钱,根据题意可得方程:,故答案为:【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)4.1【解析】试题分析:(1)由BECO,推出OCB=CBE,由OC=OB,推出OCB=OBC,可得CBE=CBO;(2)在RtCDO中,求出OD,由OCBE,可得,由此即可解决问题;试题解析:(1)证明:DE是切线,OCDE,BECO,OCB=CBE,OC=OB,OCB=OBC,CBE=CBO,BC平分ABE(2)在RtCDO中,DC=1,OC=0A=6,OD=10,OCBE,EC=4.1考点:切线的性质19、(1)证明详见解析;(2)证明详见解析;(3)1【解析】(1)利用平行线的性质及中点的定义,可利用AAS证得结论; (2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形; (3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案【详解】(1)证明:AFBC,AFE=DBE,E是AD的中点,AE=DE,在AFE和DBE中,AFEDBE(AAS);(2)证明:由(1)知,AFEDBE,则AF=DBAD为BC边上的中线DB=DC,AF=CDAFBC,四边形ADCF是平行四边形,BAC=90°,D是BC的中点,E是AD的中点,AD=DC=BC,四边形ADCF是菱形;(3)连接DF,AFBD,AF=BD,四边形ABDF是平行四边形,DF=AB=5,四边形ADCF是菱形,S菱形ADCF=ACDF=×4×5=1【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用20、(1)y;(1)(1,0)或(1,0)【解析】(1)把A的坐标代入反比例函数的表达式,即可求出答案;(1)求出A60°,B30°,求出线段OA和OB,求出AOB的面积,根据已知SAOPSAOB,求出OP长,即可求出答案【详解】(1)把A(,1)代入反比例函数y得:k1,所以反比例函数的表达式为y;(1)A(,1),OAAB,ABx轴于C,OC,AC1,OA1tanA,A60°OAOB,AOB90°,B30°,OB1OC1,SAOBOAOB1×1SAOPSAOB,OP×ACAC1,OP1,点P的坐标为(1,0)或(1,0)【点睛】本题考查了用待定系数法求反比例函数的解析式,三角形的面积,解直角三角形等知识点,求出反比例函数的解析式和求出AOB的面积是解答此题的关键21、(1)详见解析;(2)(,1)【解析】(1)根据勾股定理可得AB的长,即M的直径,根据同弧所对的圆周角可得BD平分ABO;(2)作辅助构建切线AE,根据特殊的三角函数值可得OAB=30°,分别计算EF和AF的长,可得点E的坐标【详解】(1)点A(,0)与点B(0,1),OA=,OB=1,AB=2,AB是M的直径,M的直径为2,COD=CBO,COD=CBA,CBO=CBA,即BD平分ABO;(2)如图,过点A作AEAB于E,交BD的延长线于点E,过E作EFOA于F,即AE是切线,在RtACB中,tanOAB=,OAB=30°,ABO=90°,OBA=60°,ABC=OBC=30°,OC=OBtan30°=1×,AC=OAOC=,ACE=ABC+OAB=60°,EAC=60°,ACE是等边三角形,AE=AC=,AF=AE=,EF=1,OF=OAAF=,点E的坐标为(,1)【点睛】此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识注意准确作出辅助线是解此题的关键22、(1)详见解析;(1).【解析】(1)以点M为顶点,作AMN=O即可; (1)由AOB=45°,ABOB,可知AOB为等腰为等腰直角三角形,根据勾股定理求出OA的长,即可求出AM的值.【详解】(1)作图如图所示;(1)由题知AOB为等腰RtAOB,且OB=1,所以,AO=OB=1又M为OA的中点,所以,AM=1=【点睛】本题考查了尺规作图,等腰直角三角形的判定,勾股定理等知识,熟练掌握作一个角等于已知角是解(1)的关键,证明AOB为等腰为等腰直角三角形是解(1)的关键.23、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km【解析】(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.【详解】解:(1)作CHAB于点H,如图所示,BC=12km,B=30°,km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DMAB于点M,如图所示,桥DC和AB平行,CH=6km,DM=CH=6km,DMA=90°,B=45°,MH=EF=DC,AD=km,AM=DM=6km,现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)(AM+MH+BH)=AD+DC+BCAMMHBH=AD+BCAMBH=km,即现在从A地到达B地可比原来少走的路程是4.1km【点睛】做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.24、证明见解析.【解析】根据菱形的性质,先证明ABEADF,即可得解.【详解】在菱形ABCD中,ABBCCDAD,BD.点E,F分别是BC,CD边的中点,BEBC,DFCD,BEDF.ABEADF,AEAF.