2022-2023学年陕西省西安市远东第一中学中考数学猜题卷含解析.doc
-
资源ID:87798068
资源大小:680.50KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年陕西省西安市远东第一中学中考数学猜题卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )ABCD2小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:ab,xy,x+y,a+b,x2y2,a2b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2y2)a2(x2y2)b2因式分解,结果呈现的密码信息可能是( )A我爱美B宜晶游C爱我宜昌D美我宜昌3如图,直线a,b被直线c所截,若ab,1=50°,3=120°,则2的度数为()A80°B70°C60°D50°4一次函数y=2x+1的图像不经过 ( )A第一象限 B第二象限 C第三象限 D第四象限5如图,ABC在平面直角坐标系中第二象限内,顶点A的坐标是(2,3),先把ABC向右平移6个单位得到A1B1C1,再作A1B1C1关于x轴对称图形A2B2C2,则顶点A2的坐标是()A(4,3)B(4,3)C(5,3)D(3,4)6如图,在6×4的正方形网格中,ABC的顶点均为格点,则sinACB=()AB2CD7如图,在菱形纸片ABCD中,AB=4,A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上则sinAFG的值为( )ABCD8是两个连续整数,若,则分别是( ).A2,3B3,2C3,4D6,89估计5的值应在()A5和6之间B6和7之间C7和8之间D8和9之间10如图,D是等边ABC边AD上的一点,且AD:DB=1:2,现将ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,在菱形ABCD中,AB=,B=120°,点E是AD边上的一个动点(不与A,D重合),EFAB交BC于点F,点G在CD上,DG=DE若EFG是等腰三角形,则DE的长为_12如图,一次函数y1=kx+b的图象与反比例函数y2=(x<0)的图象相交于点A和点B当y1y20时,x的取值范围是_13尺规作图:过直线外一点作已知直线的平行线已知:如图,直线l与直线l外一点P求作:过点P与直线l平行的直线作法如下:(1)在直线l上任取两点A、B,连接AP、BP;(2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;(3)过点P、M作直线;(4)直线PM即为所求请回答:PM平行于l的依据是_14一组数据:1,2,a,4,5的平均数为3,则a=_15已知关于x的方程x2+kx3=0的一个根是x=1,则另一根为_16计算:_17若a:b=1:3,b:c=2:5,则a:c=_.三、解答题(共7小题,满分69分)18(10分)一辆汽车,新车购买价30万元,第一年使用后折旧,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为万元,求这辆车第二、三年的年折旧率.19(5分)已知a2+2a=9,求的值20(8分)先化简,再求值:,其中,a、b满足21(10分)如图,在ABC中,ABAC,以AB为直径作O交BC于点D过点D作EFAC,垂足为E,且交AB的延长线于点F求证:EF是O的切线;已知AB4,AE1求BF的长22(10分)如图,在中,ABAC,点D是BC的中点,DEAB于点E,DFAC于点F. (1)EDB_(用含的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.根据条件补全图形;写出DM与DN的数量关系并证明;用等式表示线段BM、CN与BC之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.23(12分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_名学生,最喜欢用电话沟通的所对应扇形的圆心角是_°;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率24(14分)问题背景:如图1,等腰ABC中,ABAC,BAC120°,作ADBC于点D,则D为BC的中点,BADBAC60°,于是迁移应用:如图2,ABC和ADE都是等腰三角形,BACDAE120°,D,E,C三点在同一条直线上,连接BD(1)求证:ADBAEC;(2)若AD2,BD3,请计算线段CD的长;拓展延伸:如图3,在菱形ABCD中,ABC120°,在ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF(3)证明:CEF是等边三角形;(4)若AE4,CE1,求BF的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据左视图的概念得出各选项几何体的左视图即可判断【详解】解:A选项几何体的左视图为;B选项几何体的左视图为;C选项几何体的左视图为;D选项几何体的左视图为;故选:A【点睛】本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念2、C【解析】试题分析:(x2y2)a2(x2y2)b2=(x2y2)(a2b2)=(xy)(x+y)(ab)(a+b),因为xy,x+y,a+b,ab四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C考点:因式分解.3、B【解析】直接利用平行线的性质得出4的度数,再利用对顶角的性质得出答案【详解】解:ab,1=50°,4=50°,3=120°,2+4=120°,2=120°-50°=70°故选B【点睛】此题主要考查了平行线的性质,正确得出4的度数是解题关键4、D【解析】根据一次函数的系数判断出函数图象所经过的象限,由k=20,b=10可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】k=20,b=10,根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.5、A【解析】直接利用平移的性质结合轴对称变换得出对应点位置【详解】如图所示:顶点A2的坐标是(4,-3)故选A【点睛】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键6、C【解析】如图,由图可知BD=2、CD=1、BC=,根据sinBCA=可得答案【详解】解:如图所示,BD=2、CD=1,BC=,则sinBCA=,故选C【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理7、B【解析】如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE由题意可得:DE=1,HDE=60°,BCD是等边三角形,即可求DH的长,HE的长,AE的长,NE的长,EF的长,则可求sinAFG的值【详解】解:如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE四边形ABCD是菱形,AB=4,DAB=60°,AB=BC=CD=AD=4,DAB=DCB=60°,DCABHDE=DAB=60°,点E是CD中点DE=CD=1在RtDEH中,DE=1,HDE=60°DH=1,HE= AH=AD+DH=5在RtAHE中,AE=1 AN=NE=,AEGF,AF=EFCD=BC,DCB=60°BCD是等边三角形,且E是CD中点BECD,BC=4,EC=1BE=1CDABABE=BEC=90°在RtBEF中,EF1=BE1+BF1=11+(AB-EF)1EF=由折叠性质可得AFG=EFG,sinEFG= sinAFG = ,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键8、A【解析】根据,可得答案【详解】根据题意,可知,可得a=2,b=1故选A【点睛】本题考查了估算无理数的大小,明确是解题关键9、C【解析】先化简二次根式,合并后,再根据无理数的估计解答即可【详解】5=,49<54<64, 7<<8, 5的值应在7和8之间,故选C【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小10、B【解析】解:由折叠的性质可得,EDF=C=60º,CE=DE,CF=DF再由BDF+ADE=BDF+BFD=120º可得ADE=BFD,又因A=B=60º,根据两角对应相等的两三角形相似可得AEDBDF所以,设AD=a,BD=2a,AB=BC=CA=3a,再设CE=DE=x,CF=DF=y,则AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay,xy=3ay-2ax;把代入可得3ax-ay=3ay-2ax,所以5ax=4ay,即故选B【点睛】本题考查相似三角形的判定及性质二、填空题(共7小题,每小题3分,满分21分)11、1或 【解析】由四边形ABCD是菱形,得到BCAD,由于EFAB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EFAB,于是得到EF=AB=,当EFG为等腰三角形时,EF=GE=时,于是得到DE=DG=AD÷=1,GE=GF时,根据勾股定理得到DE=【详解】解:四边形ABCD是菱形,B=120°,D=B=120°,A=180°-120°=60°,BCAD,EFAB,四边形ABFE是平行四边形,EFAB,EF=AB=,DEF=A=60°,EFC=B=120°,DE=DG,DEG=DGE=30°,FEG=30°,当EFG为等腰三角形时,当EF=EG时,EG=,如图1,过点D作DHEG于H,EH=EG=,在RtDEH中,DE=1,GE=GF时,如图2,过点G作GQEF,EQ=EF=,在RtEQG中,QEG=30°,EG=1,过点D作DPEG于P,PE=EG=,同的方法得,DE=,当EF=FG时,由EFG=180°-2×30°=120°=CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为1或【点睛】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键12、-2<x<-0.5【解析】根据图象可直接得到y1y20时x的取值范围【详解】根据图象得:当y1y20时,x的取值范围是2x0.5,故答案为2x0.5.【点睛】本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键13、两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线【解析】利用画法得到PMAB,BMPA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PMAB【详解】解:由作法得PMAB,BMPA,四边形ABMP为平行四边形,PMAB故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线【点睛】本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)也考查了平行四边形的判定与性质14、1【解析】依题意有:(1+2+a+4+5)÷5=1,解得a=1故答案为115、1【解析】设另一根为x2,根据一元二次方程根与系数的关系得出-1x2=-1,即可求出答案【详解】设方程的另一个根为x2,则-1×x2=-1,解得:x2=1,故答案为1【点睛】本题考查了一元二次方程根与系数的关系:如果x1,x2是一元二次方程ax2+bx+c=0(a0)的两根,那么x1+x2=-,x1x2=16、【解析】原式= =.故答案为:.17、21【解析】分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(1×2):(3×2)=2:6;而b、c的比为:2:5=(2×3):(5×3)=6:1;,所以a、c两数的比为2:1详解:a:b=1:3=(1×2):(3×2)=2:6;b:c=2:5=(2×3):(5×3)=6:1;,所以a:c=2:1;故答案为2:1点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比三、解答题(共7小题,满分69分)18、这辆车第二、三年的年折旧率为.【解析】设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为30(1-20%)(1-x)元,第三年折旧后的而价格为30(1-20%)(1-x)2元,与第三年折旧后的价格为17.34万元建立方程求出其解即可【详解】设这辆车第二、三年的年折旧率为,依题意,得 整理得, 解得,.因为折旧率不可能大于1,所以不合题意,舍去.所以 答:这辆车第二、三年的年折旧率为.【点睛】本题是一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键19、,【解析】试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值试题解析:= = =, a2+2a=9,(a+1)2=1原式=20、【解析】先根据分式混合运算顺序和运算法则化简原式,再解方程组求得a、b的值,继而代入计算可得【详解】原式=,=, =,解方程组得,所以原式=【点睛】本题主要考查分式的化简求值和解二元一次方程组,解题的关键是熟练掌握分式混合运算顺序和运算法则21、(1)证明见解析;(2)2.【解析】(1)作辅助线,根据等腰三角形三线合一得BDCD,根据三角形的中位线可得ODAC,所以得ODEF,从而得结论;(2)证明ODFAEF,列比例式可得结论【详解】(1)证明:连接OD,AD,AB是O的直径,ADBC,ABAC,BDCD,OAOB,ODAC,EFAC,ODEF,EF是O的切线;(2)解:ODAE,ODFAEF,AB4,AE1,BF2【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、相似三角形的性质和判定,圆的切线的判定,掌握本题的辅助线的作法是解题的关键22、(1);(2)(2)见解析;DMDN,理由见解析;数量关系:【解析】(1)先利用等腰三角形的性质和三角形内角和得到B=C=90°,然后利用互余可得到EDB=;(2)如图,利用EDF=180°2画图;先利用等腰三角形的性质得到DA平分BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到EDF=180°2,所以MDE=NDF,然后证明MDENDF得到DM=DN;先由MDENDF可得EM=FN,再证明BDECDF得BE=CF,利用等量代换得到BM+CN=2BE,然后根据正弦定义得到BE=BDsin,从而有BM+CN=BCsin【详解】(1)AB=AC,B=C(180°A)=90°DEAB,DEB=90°,EDB=90°B=90°(90°)=故答案为:;(2)如图:DM=DN理由如下:AB=AC,BD=DC,DA平分BACDEAB于点E,DFAC于点F,DE=DF,MED=NFD=90°A=2,EDF=180°2MDN=180°2,MDE=NDF在MDE和NDF中,MDENDF,DM=DN;数量关系:BM+CN=BCsin证明思路为:先由MDENDF可得EM=FN,再证明BDECDF得BE=CF,所以BM+CN=BE+EM+CFFN=2BE,接着在RtBDE可得BE=BDsin,从而有BM+CN=BCsin【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰三角形的性质23、 (1)120,54;(2)补图见解析;(3)660名;(4).【解析】(1)用喜欢使用微信的人数除以它所占的百分比得到调查的总人数,再用360°乘以样本中电话人数所占比例;(2)先计算出喜欢使用短信的人数,然后补全条形统计图;(3)利用样本估计总体,用1200乘以样本中最喜欢用QQ进行沟通的学生所占的百分比即可;(4)画树状图展示所有9种等可能的结果数,再找出甲乙两名同学恰好选中同一种沟通方式的结果数,然后根据概率公式求解【详解】解:(1)这次统计共抽查学生24÷20%120(人),其中最喜欢用电话沟通的所对应扇形的圆心角是360°×54°,故答案为120、54;(2)喜欢使用短信的人数为120182466210(人),条形统计图为:(3)1200×660,所以估计1200名学生中最喜欢用QQ进行沟通的学生有660名;(4)画树状图为:共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3,所以甲乙两名同学恰好选中同一种沟通方式的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率也考查了统计图和用样本估计总体24、(1)见解析;(2)CD =;(3)见解析;(4)【解析】试题分析:迁移应用:(1)如图2中,只要证明DAB=CAE,即可根据SAS解决问题;(2)结论:CD=AD+BD由DABEAC,可知BD=CE,在RtADH中,DH=ADcos30°= AD,由AD=AE,AHDE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:(3)如图3中,作BHAE于H,连接BE由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出ADC=AEC=120°,推出FEC=60°,推出EFC是等边三角形;(4)由AE=4,EC=EF=1,推出AH=HE=2,FH=3,在RtBHF中,由BFH=30°,可得=cos30°,由此即可解决问题试题解析:迁移应用:(1)证明:如图2,BAC=DAE=120°,DAB=CAE,在DAE和EAC中,DA=EA,DAB=EAC,AB=AC,DABEAC,(2)结论:CD=AD+BD理由:如图2-1中,作AHCD于HDABEAC,BD=CE,在RtADH中,DH=ADcos30°=AD,AD=AE,AHDE,DH=HE,CD=DE+EC=2DH+BD=AD+BD=拓展延伸:(3)如图3中,作BHAE于H,连接BE四边形ABCD是菱形,ABC=120°,ABD,BDC是等边三角形,BA=BD=BC,E、C关于BM对称,BC=BE=BD=BA,FE=FC,A、D、E、C四点共圆,ADC=AEC=120°,FEC=60°,EFC是等边三角形,(4)AE=4,EC=EF=1,AH=HE=2,FH=3,在RtBHF中,BFH=30°, =cos30°,BF=