2022-2023学年江苏省姜堰四中重点中学中考考前最后一卷数学试卷含解析.doc
-
资源ID:87798187
资源大小:990KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年江苏省姜堰四中重点中学中考考前最后一卷数学试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且. 图象上有一点在轴下方,则下列判断正确的是( )ABCD2在RtABC中,C=90°,AC=1,BC=3,则A的正切值为()A3BCD3如图,ABC中,AB=AC=15,AD平分BAC,点E为AC的中点,连接DE,若CDE的周长为21,则BC的长为( )A16B14C12D64下列式子成立的有( )个的倒数是2(2a2)38a5()2方程x23x+10有两个不等的实数根A1B2C3D45如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )ABCD6如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交ABC的平分线于点P,则点P到边AB所在直线的距离为( )ABCD17为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a2b,2ab,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A3,1B1,3C3,1D1,38若÷,则“”可能是()ABCD9已知二次函数的与的不符对应值如下表:且方程的两根分别为,下面说法错误的是( )A,BC当时,D当时,有最小值10一元二次方程x22x0的根是()Ax2Bx0Cx10,x22Dx10,x22二、填空题(共7小题,每小题3分,满分21分)11使有意义的的取值范围是_12甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是_(填“甲”或“乙”)13如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形ABCD的位置,AB2,AD4,则阴影部分的面积为_14如图,在矩形ABCD中,DEAC,垂足为E,且tanADE,AC5,则AB的长_15如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_cm16如图,在边长为9的正三角形ABC中,BD=3,ADE=60°,则AE的长为17计算(x4)2的结果等于_三、解答题(共7小题,满分69分)18(10分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c经过点C(1)如图1,若抛物线经过点A和D(2,0)求点C的坐标及该抛物线解析式;在抛物线上是否存在点P,使得POB=BAO,若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a0)经过点E(2,1),点Q在抛物线上,且满足QOB=BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围19(5分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径20(8分)对x,y定义一种新运算T,规定T(x,y)=(其中a,b是非零常数,且x+y0),这里等式右边是通常的四则运算如:T(3,1)=,T(m,2)=填空:T(4,1)= (用含a,b的代数式表示);若T(2,0)=2且T(5,1)=1求a与b的值;若T(3m10,m)=T(m,3m10),求m的值21(10分)综合与实践猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为: ;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”小丽:连接AF,图中出现新的等腰三角形,如AFB,小凯:不妨设图中不断变化的角BAF的度数为n,并设法用n表示图中的一些角,可证明结论请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发现线段CGDF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,ABC=,其余条件不变,请探究DFG的度数,并直接写出结果(用含的式子表示)22(10分)全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分,运动形式ABCDE人数请你根据以上信息,回答下列问题:接受问卷调查的共有 人,图表中的 , .统计图中,类所对应的扇形的圆心角的度数是 度.揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.23(12分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?24(14分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据抛物线与x轴有两个不同的交点,根的判别式0,再分a0和a0两种情况对C、D选项讨论即可得解【详解】A、二次函数y=ax2+bx+c(a0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、x1x2,=b2-4ac0,故本选项错误;C、若a0,则x1x0x2,若a0,则x0x1x2或x1x2x0,故本选项错误;D、若a0,则x0-x10,x0-x20,所以,(x0-x1)(x0-x2)0,a(x0-x1)(x0-x2)0,若a0,则(x0-x1)与(x0-x2)同号,a(x0-x1)(x0-x2)0,综上所述,a(x0-x1)(x0-x2)0正确,故本选项正确2、A【解析】【分析】根据锐角三角函数的定义求出即可【详解】在RtABC中,C=90°,AC=1,BC=3,A的正切值为=3,故选A【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键3、C【解析】先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为ABC中位线,故ABC的周长是CDE的周长的两倍,由此可求出BC的值.【详解】AB=AC=15,AD平分BAC,D为BC中点,点E为AC的中点,DE为ABC中位线,DE=AB,ABC的周长是CDE的周长的两倍,由此可求出BC的值.AB+AC+BC=42,BC=42-15-15=12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.4、B【解析】根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断【详解】解:的倒数是2,故正确;(2a2)38a6,故错误;(-)2,故错误;因为(3)24×1×150,所以方程x23x+10有两个不等的实数根,故正确故选B【点睛】考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答5、C【解析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:故选:C【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键6、D【解析】试题分析:ABC为等边三角形,BP平分ABC,PBC=ABC=30°,PCBC,PCB=90°,在RtPCB中,PC=BCtanPBC=1,点P到边AB所在直线的距离为1,故选D考点:1角平分线的性质;2等边三角形的性质;3含30度角的直角三角形;4勾股定理7、A【解析】根据题意可得方程组,再解方程组即可【详解】由题意得:,解得:,故选A8、A【解析】直接利用分式的乘除运算法则计算得出答案【详解】。故选:A【点睛】考查了分式的乘除运算,正确分解因式再化简是解题关键9、C【解析】分别结合图表中数据得出二次函数对称轴以及图像与x轴交点范围和自变量x与y的对应情况,进而得出答案.【详解】A、利用图表中x0,1时对应y的值相等,x1,2时对应y的值相等,x2,5时对应y的值相等,x2,y5,故此选项正确;B、方程ax2bcc0的两根分别是x1、x2(x1x2),且x1时y1;x2时,y1,1x22,故此选项正确;C、由题意可得出二次函数图像向上,当x1xx2时,y0,故此选项错误;D、利用图表中x0,1时对应y的值相等,当x时,y有最小值,故此选项正确,不合题意.所以选C.【点睛】此题主要考查了抛物线与x轴的交点以及利用图像上点的坐标得出函数的性质,利用数形结合得出是解题关键.10、C【解析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解【详解】方程变形得:x(x1)0,可得x0或x10,解得:x10,x11故选C【点睛】考查了解一元二次方程因式分解法,熟练掌握因式分解的方法是解本题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据二次根式的被开方数为非负数求解即可.【详解】由题意可得:,解得:.所以答案为.【点睛】本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.12、甲【解析】由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S2甲<S2乙,即两人的成绩更加稳定的是甲故答案为甲13、【解析】试题解析:连接 四边形ABCD是矩形, CE=BC=4,CE=2CD, 由勾股定理得: 阴影部分的面积是S=S扇形CEBSCDE 故答案为14、3.【解析】先根据同角的余角相等证明ADEACD,在ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【详解】四边形ABCD是矩形,ADC90°,ABCD,DEAC,AED90°,ADE+DAE90°,DAE+ACD90°,ADEACD,tanACDtanADE,设AD4k,CD3k,则AC5k,5k5,k1,CDAB3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.15、40cm【解析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可【详解】圆锥的底面直径为60cm,圆锥的底面周长为60cm,扇形的弧长为60cm,设扇形的半径为r,则=60,解得:r=40cm,故答案为:40cm【点睛】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解16、7【解析】试题分析:ABC是等边三角形,B=C=60°,AB=BCCD=BCBD=93=6,;BAD+ADB=120°ADE=60°,ADB+EDC=120°DAB=EDC又B=C=60°,ABDDCE,即17、x1【解析】分析:直接利用幂的乘方运算法则计算得出答案详解:(x4)2=x4×2=x1 故答案为x1点睛:本题主要考查了幂的乘方运算,正确掌握运算法则是解题的关键三、解答题(共7小题,满分69分)18、(1)y=x2+x+3;P( ,)或P'( ,);(2) a<1;【解析】(1)先判断出AOBGBC,得出点C坐标,进而用待定系数法即可得出结论;分两种情况,利用平行线(对称)和直线和抛物线的交点坐标的求法,即可得出结论;(2)同(1)的方法,借助图象即可得出结论【详解】(1)如图2,A(1,3),B(1,1),OA=3,OB=1,由旋转知,ABC=91°,AB=CB,ABO+CBE=91°,过点C作CGOB于G,CBG+BCG=91°,ABO=BCG,AOBGBC,CG=OB=1,BG=OA=3,OG=OB+BG=4C(4,1),抛物线经过点A(1,3),和D(2,1),抛物线解析式为y=x2+x+3;由知,AOBEBC,BAO=CBF,POB=BAO,POB=CBF,如图1,OPBC,B(1,1),C(4,1),直线BC的解析式为y=x,直线OP的解析式为y=x,抛物线解析式为y=x2+x+3;联立解得,或(舍)P(,);在直线OP上取一点M(3,1),点M的对称点M'(3,1),直线OP'的解析式为y=x,抛物线解析式为y=x2+x+3;联立解得,或(舍),P'(,);(2)同(1)的方法,如图3,抛物线y=ax2+bx+c经过点C(4,1),E(2,1),抛物线y=ax26ax+8a+1,令y=1,ax26ax+8a+1=1,x1×x2=符合条件的Q点恰好有2个,方程ax26ax+8a+1=1有一个正根和一个负根或一个正根和1,x1×x2=1,a1,8a+11,a,即:a1【点睛】本题是二次函数综合题,考查了待定系数法,全等三角形的判定和性质,平行线的性质,对称的性质,解题的关键是求出直线和抛物线的交点坐标.19、这个圆形截面的半径为10cm.【解析】分析:先作辅助线,利用垂径定理求出半径,再根据勾股定理计算解答:解:如图,OEAB交AB于点D,则DE=4,AB=16,AD=8,设半径为R,OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm20、(1) ;(2)a=1,b=-1,m=2【解析】(1)根据题目中的新运算法则计算即可;(2)根据题意列出方程组即可求出a,b的值;先分别算出T(3m3,m)与T(m,3m3)的值,再根据求出的值列出等式即可得出结论.【详解】解:(1)T(4,1)=;故答案为;(2)T(2,0)=2且T(2,1)=1,解得解法一:a=1,b=1,且x+y0,T(x,y)=xyT(3m3,m)=3m3m=2m3,T(m,3m3)=m3m+3=2m+3T(3m3,m)=T(m,3m3),2m3=2m+3,解得,m=2解法二:由解法可得T(x,y)=xy,当T(x,y)=T(y,x)时,xy=yx,x=yT(3m3,m)=T(m,3m3),3m3=m,m=2【点睛】本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题.21、 (1) GF=GD,GFGD;(2)见解析;(3)见解析;(4) 90°.【解析】(1)根据四边形ABCD是正方形可得ABD=ADB=45°,BAD=90°,点D关于直线AE的对称点为点F,即可证明出DBF=90°,故GFGD,再根据F=ADB,即可证明GF=GD;(2)连接AF,证明AFG=ADG,再根据四边形ABCD是正方形,得出AB=AD,BAD=90°,设BAF=n,FAD=90°+n,可得出FGD=360°FADAFGADG=360°(90°+n)(180°n)=90°,故GFGD;(3)连接BD,由(2)知,FG=DG,FGDG,再分别求出GFD与DBC的角度,再根据三角函数的性质可证明出BDFCDG,故DGC=FDG,则CGDF;(4)连接AF,BD,根据题意可证得DAM=90°2=90°1,DAF=2DAM=180°21,再根据菱形的性质可得ADB=ABD=,故AFB+DBF+ADB+DAF=(DFG+1)+(DFG+1+)+(180°21)=360°,2DFG+21+21=180°,即可求出DFG【详解】解:(1)GF=GD,GFGD,理由:四边形ABCD是正方形,ABD=ADB=45°,BAD=90°,点D关于直线AE的对称点为点F,BAD=BAF=90°,F=ADB=45°,ABF=ABD=45°,DBF=90°,GFGD,BAD=BAF=90°,点F,A,D在同一条线上,F=ADB,GF=GD,故答案为GF=GD,GFGD;(2)连接AF,点D关于直线AE的对称点为点F,直线AE是线段DF的垂直平分线,AF=AD,GF=GD,1=2,3=FDG,1+3=2+FDG,AFG=ADG,四边形ABCD是正方形,AB=AD,BAD=90°,设BAF=n,FAD=90°+n,AF=AD=AB,FAD=ABF,AFB+ABF=180°n,AFB+ADG=180°n,FGD=360°FADAFGADG=360°(90°+n)(180°n)=90°,GFDG,(3)如图2,连接BD,由(2)知,FG=DG,FGDG,GFD=GDF=(180°FGD)=45°,四边形ABCD是正方形,BC=CD,BCD=90°,BDC=DBC=(180°BCD)=45°,FDG=BDC,FDGBDG=BDCBDG,FDB=GDC,在RtBDC中,sinDFG=sin45°=,在RtBDC中,sinDBC=sin45°=,BDFCDG,FDB=GDC,DGC=DFG=45°,DGC=FDG,CGDF;(4)90°,理由:如图3,连接AF,BD,点D与点F关于AE对称,AE是线段DF的垂直平分线,AD=AF,1=2,AMD=90°,DAM=FAM,DAM=90°2=90°1,DAF=2DAM=180°21,四边形ABCD是菱形,AB=AD,AFB=ABF=DFG+1,BD是菱形的对角线,ADB=ABD=,在四边形ADBF中,AFB+DBF+ADB+DAF=(DFG+1)+(DFG+1+)+(180°21)=360°2DFG+21+21=180°,DFG=90°【点睛】本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.22、(1)150、45、36;(2)28.8°;(3)450人【解析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)利用总人数乘以样本中C人数所占比例可得【详解】解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为故答案为:28.8°;(3)(人)答:估计该社区参加碧沙岗“暴走团”的大约有450人【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键扇形统计图直接反映部分占总体的百分比大小23、(1)L1表示汽车B到甲地的距离与行驶时间的关系;(2)汽车B的速度是1.5千米/分;(3)s1=1.5t+330,s2=t;(4)2小时后,两车相距30千米;(5)行驶132分钟,A、B两车相遇【解析】试题分析:(1)直接根据函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;(2)由L1上60分钟处点的坐标可知路程和时间,从而求得速度;(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;(4)结合(3)中函数图象求得时s的值,做差即可求解;(5)求出函数图象的交点坐标即可求解试题解析:(1)函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;(2)(330240)÷60=1.5(千米/分);(3)设L1为 把点(0,330),(60,240)代入得 所以 设L2为 把点(60,60)代入得 所以 (4)当时, 330150120=60(千米);所以2小时后,两车相距60千米;(5)当时, 解得 即行驶132分钟,A、B两车相遇24、(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(1)至少销售甲种商品1万件【解析】(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:1件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比1件乙种商品的销售收入多1500元,列出方程组求解即可;(1)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可【详解】(1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有:,解得答:甲种商品的销售单价900元,乙种商品的销售单价600元;(1)设销售甲种商品a万件,依题意有:900a+600(8a)5400,解得:a1答:至少销售甲种商品1万件【点睛】本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系