2022-2023学年江苏省扬州市邗江实验中考五模数学试题含解析.doc
-
资源ID:87798419
资源大小:1.14MB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年江苏省扬州市邗江实验中考五模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若关于的一元二次方程的一个根是0,则的值是( )A1B-1C1或-1D2一个多边形的边数由原来的3增加到n时(n3,且n为正整数),它的外角和()A增加(n2)×180°B减小(n2)×180°C增加(n1)×180°D没有改变3若一个多边形的内角和为360°,则这个多边形的边数是( )A3 B4 C5 D64如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A右转80°B左转80°C右转100°D左转100°5直线AB、CD相交于点O,射线OM平分AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A相离B相切C相交D不确定6关于反比例函数,下列说法正确的是( )A函数图像经过点(2,2);B函数图像位于第一、三象限;C当时,函数值随着的增大而增大;D当时,7如果y+3,那么yx的算术平方根是( )A2B3C9D±38若顺次连接四边形各边中点所得的四边形是菱形,则四边形一定是( )A矩形B菱形C对角线互相垂直的四边形D对角线相等的四边形9已知二次函数的图象如图所示,若,是这个函数图象上的三点,则的大小关系是( )ABCD10生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是( )Ax(x+1)=132Bx(x-1)=132Cx(x+1)=132×Dx(x-1)=132×211甲、乙两车从A地出发,匀速驶向B地甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示下列说法:乙车的速度是120km/h;m160;点H的坐标是(7,80);n7.1其中说法正确的有()A4个B3个C2个D1个12如图,在中,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路径长为( )A或B或C或D或二、填空题:(本大题共6个小题,每小题4分,共24分)13已知m=,n=,那么2016mn=_14如图,边长为6的菱形ABCD中,AC是其对角线,B=60°,点P在CD上,CP=2,点M在AD上,点N在AC上,则PMN的周长的最小值为_ 15如图,ABCDE是正五边形,已知AG=1,则FG+JH+CD=_16方程x-1=的解为:_17若A(3,y1),B(2,y2),C(1,y3)三点都在y=的图象上,则yl,y2,y3的大小关系是_(用“”号填空)18计算:3130_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图1,在RtABC中,ABC=90°,BA=BC,直线MN是过点A的直线CDMN于点D,连接BD(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系经过观察思考,小明出一种思路:如图1,过点B作BEBD,交MN于点E,进而得出:DC+AD=BD(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当ABD面积取得最大值时,若CD长为1,请直接写BD的长20(6分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数的图象于B点,交函数的图象于C,过C作y轴和平行线交BO的延长线于D(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;(3)在(1)条件下,四边形AODC的面积为多少?21(6分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两校各随机抽取名学生,在这次竞赛中他们的成绩如下:甲:乙:整理、描述数据按如下分数段整理、描述这两组样本数据:学校人数成绩甲乙 (说明:优秀成绩为,良好成绩为合格成绩为.)分析数据两组样本数据的平均分、中位数、众数如下表所示:学校平均分中位数众数甲乙其中 .得出结论(1)小明同学说:“这次竞赛我得了分,在我们学校排名属中游略偏上!”由表中数据可知小明是 _校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取-名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为_ ;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由: ;(至少从两个不同的角度说明推断的合理性)22(8分)如图,ABCD,12,求证:AMCN23(8分) “千年古都,大美西安”某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔 B:兵马俑 C:陕西历史博物馆 D:秦岭野生动物园 E:曲江海洋馆)下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数24(10分)如图,点E,F在BC上,BECF,AD,BC,AF与DE交于点O求证:ABDC;试判断OEF的形状,并说明理由25(10分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图和图请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为 ,图中m的值为 ;求统计的这组跳水运动员年龄数据的平均数、众数和中位数26(12分)如图,已知抛物线yax2+bx+5经过A(5,0),B(4,3)两点,与x轴的另一个交点为C,顶点为D,连结CD求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t当点P在直线BC的下方运动时,求PBC的面积的最大值;该抛物线上是否存在点P,使得PBCBCD?若存在,求出所有点P的坐标;若不存在,请说明理由27(12分)阅读下面材料,并解答问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式解:由分母为x2+1,可设x4x2+3=(x2+1)(x2+a)+b则x4x2+3=(x2+1)(x2+a)+b=x4ax2+x2+a+b=x4(a1)x2+(a+b)对应任意x,上述等式均成立,a=2,b=1=+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和解答:将分式 拆分成一个整式与一个分式(分子为整数)的和的形式试说明的最小值为1参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可【详解】把x=0代入方程得,解得a=±1原方程是一元二次方程,所以 ,所以,故故答案为B【点睛】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解2、D【解析】根据多边形的外角和等于360°,与边数无关即可解答.【详解】多边形的外角和等于360°,与边数无关,一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变故选D【点睛】本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.3、B【解析】利用多边形的内角和公式求出n即可.【详解】由题意得:(n-2)×180°=360°, 解得n=4; 故答案为:B.【点睛】本题考查多边形的内角和,解题关键在于熟练掌握公式.4、A【解析】60°+20°=80°由北偏西20°转向北偏东60°,需要向右转故选A5、A【解析】根据角平分线的性质和点与直线的位置关系解答即可【详解】解:如图所示;OM平分AOD,以点P为圆心的圆与直线AB相离,以点P为圆心的圆与直线CD相离,故选:A【点睛】此题考查直线与圆的位置关系,关键是根据角平分线的性质解答6、C【解析】直接利用反比例函数的性质分别分析得出答案【详解】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-,当x1时,y-4,故此选项错误;故选C【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键7、B【解析】解:由题意得:x20,2x0,解得:x=2,y=1,则yx=9,9的算术平方根是1故选B8、C【解析】【分析】如图,根据三角形的中位线定理得到EHFG,EH=FG,EF=BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案【点睛】如图,E,F,G,H分别是边AD,DC,CB,AB的中点,EH=AC,EHAC,FG=AC,FGAC,EF=BD,EHFG,EH=FG,四边形EFGH是平行四边形,假设AC=BD,EH=AC,EF=BD,则EF=EH,平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键9、A【解析】先求出二次函数的对称轴,结合二次函数的增减性即可判断【详解】解:二次函数的对称轴为直线,抛物线开口向下,当时,y随x增大而增大,故答案为:A【点睛】本题考查了根据自变量的大小,比较函数值的大小,解题的关键是熟悉二次函数的增减性10、B【解析】全组有x名同学,则每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,所以,x(x-1)=132,故选B.11、B【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲则说明乙每小时比甲快40km,则乙的速度为120km/h正确;由图象第26小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,错误故选B【点睛】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态12、A【解析】根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论【详解】当点D与B重合时,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM, AB是直径 即 点M的轨迹是以EF为直径的半圆, 以EF为直径的圆的半径为1点M运动的路径长为 当 时,同理可得点M运动的路径长为故选:A【点睛】本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据积的乘方的性质将m的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n,再根据任何非零数的零次幂等于1解答.【详解】解:m=,m=n,2016m-n=20160=1故答案为:1【点睛】本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n.14、2【解析】过P作关于AC和AD的对称点,连接和,过P作, 和,M,N共线时最短,根据对称性得知PMN的周长的最小值为.因为四边形ABCD是菱形,AD是对角线,可以求得,根据特殊三角形函数值求得,再根据线段相加勾股定理即可求解.【详解】过P作关于AC和AD的对称点,连接和,过P作,四边形ABCD是菱形,AD是对角线,,又由题意得【点睛】本题主要考查对称性质,菱形性质,内角和定理和勾股定理,熟悉掌握定理是关键.15、+1【解析】根据对称性可知:GJBH,GBJH,四边形JHBG是平行四边形,JH=BG,同理可证:四边形CDFB是平行四边形,CD=FB,FG+JH+CD=FG+BG+FB=2BF,设FG=x,AFG=AFB,FAG=ABF=36°,AFGBFA,AF2=FGBF,AF=AG=BG=1,x(x+1)=1,x=(负根已经舍弃),BF=+1=,FG+JH+CD=+1故答案为+116、【解析】两边平方解答即可【详解】原方程可化为:(x-1)2=1-x,解得:x1=0,x2=1,经检验,x=0不是原方程的解,x=1是原方程的解故答案为 【点睛】此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验17、y3y1y1【解析】根据反比例函数的性质k0时,在每个象限,y随x的增大而增大,进行比较即可【详解】解:k=-10,在每个象限,y随x的增大而增大,-3-10,0y1y1又10y30y3y1y1故答案为:y3y1y1【点睛】本题考查的是反比例函数的性质,理解性质:当k0时,在每个象限,y随x的增大而减小,k0时,在每个象限,y随x的增大而增大是解题的关键18、.【解析】原式利用零指数幂、负整数指数幂法则计算即可求出值【详解】原式1.故答案是:.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2)ADDC=BD;(3)BD=AD=+1【解析】(1)根据全等三角形的性质求出DC,AD,BD之间的数量关系(2)过点B作BEBD,交MN于点EAD交BC于O,证明,得到, 根据为等腰直角三角形,得到,再根据,即可解出答案.(3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,ABD的面积最大在DA上截取一点H,使得CD=DH=1,则易证,由即可得出答案.【详解】解:(1)如图1中,由题意:,AE=CD,BE=BD,CD+AD=AD+AE=DE,是等腰直角三角形,DE=BD,DC+AD=BD,故答案为(2)证明:如图,过点B作BEBD,交MN于点EAD交BC于O,又,为等腰直角三角形,(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,ABD的面积最大此时DGAB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证,【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.20、(1)线段AB与线段CA的长度之比为;(2)线段AB与线段CA的长度之比为;(3)1【解析】试题分析:(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.试题解析:(1)A(0,2),BCx轴,B(1,2),C(3,2),AB=1,CA=3,线段AB与线段CA的长度之比为;(2)B是函数y=(x0)的一点,C是函数y=(x0)的一点,B(,a),C(,a),AB=,CA=,线段AB与线段CA的长度之比为;(3)=,=,又OA=a,CDy轴,CD=4a,四边形AODC的面积为=(a+4a)×=1 21、80;(1)甲;(2);(3)乙学校竞赛成绩较好,理由见解析【解析】首先根据乙校的成绩结合众数的定义即可得出a的值;(1)根据两个学校成绩的中位数进一步判断即可;(2)根据概率的定义,结合乙校优秀成绩的概率进一步求解即可;(3)根据题意,从平均数以及中位数两方面加以比较分析即可.【详解】由乙校成绩可知,其中80出现的次数最多,故80为该组数据的众数,a=80,故答案为:80;(1)由表格可知,甲校成绩的中位数为60,乙校成绩的中位数为75,小明这次竞赛得了分,在他们学校排名属中游略偏上,小明为甲校学生,故答案为:甲;(2)乙校随便抽取一名学生的成绩,该学生成绩为优秀的概率为:,故答案为:;(3)乙校竞赛成绩较好,理由如下:因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多,综上所述,乙校竞赛成绩较好.【点睛】本题主要考查了众数、中位数、平均数的定义与简单概率的计算的综合运用,熟练掌握相关概念是解题关键.22、详见解析.【解析】只要证明EAM=ECN,根据同位角相等两直线平行即可证明.【详解】证明:ABCD,EAB=ECD,1=2,EAM=ECN,AMCN【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握平行线的性质和判定,属于中考基础题23、(1)40;(2)想去D景点的人数是8,圆心角度数是72°(3)280.【解析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去B景点的人数所占的百分比即可【详解】(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40-8-14-4-6=8(人),补全条形统计图为:扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为×360°=72°;(3)800×=280,所以估计“醉美旅游景点B“的学生人数为280人【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来从条形图可以很容易看出数据的大小,便于比较也考查了扇形统计图和利用样本估计总体24、(1)证明略(2)等腰三角形,理由略【解析】证明:(1)BECF,BEEFCFEF, 即BFCE 又AD,BC,ABFDCE(AAS), ABDC (2)OEF为等腰三角形 理由如下:ABFDCE,AFB=DECOE=OFOEF为等腰三角形25、(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1(2)观察条形统计图,这组数据的平均数为15;在这组数据中,16出现了12次,出现的次数最多,这组数据的众数为16;将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键26、 (1)yx2+6x+5;(2)SPBC的最大值为;存在,点P的坐标为P(,)或(0,5)【解析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:yx+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(,),过该点与BC垂直的直线的k值为1,求出 直线BC中垂线的表达式为:yx4,同理直线CD的表达式为:y2x+2,、联立并解得:x2,即点H(2,2),同理可得直线BH的表达式为:yx1,联立和yx2+6x+5并解得:x,即可求出P点;当点P(P)在直线BC上方时,根据PBCBCD求出BPCD,求出直线BP的表达式为:y2x+5,联立yx2+6x+5和y2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:yx2+6x+5,令y0,则x1或5,即点C(1,0);(2)如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:yx+1,设点G(t,t+1),则点P(t,t2+6t+5),SPBCPG(xCxB)(t+1t26t5)t2t6,-0,SPBC有最大值,当t时,其最大值为;设直线BP与CD交于点H,当点P在直线BC下方时,PBCBCD,点H在BC的中垂线上,线段BC的中点坐标为(,),过该点与BC垂直的直线的k值为1,设BC中垂线的表达式为:yx+m,将点(,)代入上式并解得:直线BC中垂线的表达式为:yx4,同理直线CD的表达式为:y2x+2,联立并解得:x2,即点H(2,2),同理可得直线BH的表达式为:yx1,联立并解得:x或4(舍去4),故点P(,);当点P(P)在直线BC上方时,PBCBCD,BPCD,则直线BP的表达式为:y2x+s,将点B坐标代入上式并解得:s5,即直线BP的表达式为:y2x+5,联立并解得:x0或4(舍去4),故点P(0,5);故点P的坐标为P(,)或(0,5)【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.27、 (1) =x2+7+ (2) 见解析【解析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用不等式的性质求出最小值即可【详解】(1)设x46x+1=(x2+1)(x2+a)+b=x4+(1a)x2+a+b,可得 ,解得:a=7,b=1,则原式=x2+7+;(2)由(1)可知,=x2+7+ x20,x2+77;当x=0时,取得最小值0,当x=0时,x2+7+最小值为1,即原式的最小值为1