2022-2023学年江苏省扬州市部分校中考数学考前最后一卷含解析.doc
-
资源ID:87798442
资源大小:535KB
全文页数:13页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年江苏省扬州市部分校中考数学考前最后一卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形,转动这个四边形,使它形状改变,当,时,等于( )ABCD2的值等于( )ABCD3已知a,b为两个连续的整数,且a<<b,则a+b的值为()A7B8C9D104下列各数中最小的是( )A0B1CD5一元二次方程(x+3)(x-7)=0的两个根是Ax1=3,x2=-7 Bx1=3,x2=7Cx1=-3,x2=7 Dx1=-3,x2=-76计算(5)(3)的结果等于()A8 B8 C2 D27小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是BOA的角平分线”他这样做的依据是()A角的内部到角的两边的距离相等的点在角的平分线上B角平分线上的点到这个角两边的距离相等C三角形三条角平分线的交点到三条边的距离相等D以上均不正确8如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃那么最省事的办法是带( )A带去B带去C带去D带去9下列计算中正确的是()Ax2+x2=x4Bx6÷x3=x2C(x3)2=x6Dx-1=x10下面的图形是轴对称图形,又是中心对称图形的有()A1个B2个C3个D4个二、填空题(共7小题,每小题3分,满分21分)11如图,的半径为,点,都在上,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为_(结果保留)12已知点A(x1,y1),B(x2,y2)在直线ykxb上,且直线经过第一、三、四象限,当x1x2时,y1与y2的大小关系为_13对于任意实数a、b,定义一种运算:ab=aba+b1例如,15=1×51+51=ll请根据上述的定义解决问题:若不等式3x1,则不等式的正整数解是_14已知双曲线经过点(1,2),那么k的值等于_.15如图,在矩形ABCD中,AD=5,AB=4,E是BC上的一点,BE=3,DFAE,垂足为F,则tanFDC=_16已知一元二次方程x24x30的两根为m,n,则mn= 17如图,等边ABC的边长为6,ABC,ACB的角平分线交于点D,过点D作EFBC,交AB、CD于点E、F,则EF的长度为_三、解答题(共7小题,满分69分)18(10分)如图,点A,C,B,D在同一条直线上,BEDF,A=F,AB=FD,求证:AE=FC19(5分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间20(8分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长(结果精确到0.1km)求景点C与景点D之间的距离(结果精确到1km)21(10分)计算:|-2|+21cos61°(1)122(10分)甲、乙两公司各为“希望工程”捐款2000元已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?23(12分)已知如图,直线y= x+4 与x轴相交于点A,与直线y= x相交于点P(1)求点P的坐标;(2)动点E从原点O出发,沿着OPA的路线向点A匀速运动(E不与点O、A重合),过点E分别作EFx轴于F,EBy轴于B设运动t秒时, F的坐标为(a,0),矩形EBOF与OPA重叠部分的面积为S直接写出: S与a之间的函数关系式(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1: 若存在直接写出Q点坐标。若不存在请说明理由。24(14分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于m,则称m为这个函数的反向值在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离特别地,当函数只有一个反向值时,其反向距离n为零例如,图中的函数有4,1两个反向值,其反向距离n等于1(1)分别判断函数yx+1,y,yx2有没有反向值?如果有,直接写出其反向距离;(2)对于函数yx2b2x,若其反向距离为零,求b的值;若1b3,求其反向距离n的取值范围;(3)若函数y请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,易得ABC是等边三角形,即可得到答案【详解】连接AC,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=BC,ABC是等边三角形,AC=AB=1故选:B【点睛】本题考点:菱形的性质.2、C【解析】试题解析:根据特殊角的三角函数值,可知: 故选C.3、A【解析】9<11<16,即,a,b为两个连续的整数,且,a=3,b=4,a+b=7,故选A.4、D【解析】根据任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断【详解】01则最小的数是故选:D【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键5、C【解析】根据因式分解法直接求解即可得【详解】(x+3)(x7)=0,x+3=0或x7=0,x1=3,x2=7,故选C【点睛】本题考查了解一元二次方程因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.6、C【解析】分析:减去一个数,等于加上这个数的相反数 依此计算即可求解详解:(-5)-(-3)=-1故选:C点睛:考查了有理数的减法,方法指引:在进行减法运算时,首先弄清减数的符号; 将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数)7、A【解析】过两把直尺的交点C作CFBO与点F,由题意得CEAO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分AOB【详解】如图所示:过两把直尺的交点C作CFBO与点F,由题意得CEAO,两把完全相同的长方形直尺,CE=CF,OP平分AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理8、A【解析】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.【详解】中含原三角形的两角及夹边,根据ASA公理,能够唯一确定三角形.其它两个不行.故选:A.【点睛】此题主要考查全等三角形的运用,熟练掌握,即可解题.9、C【解析】根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.【详解】A. x2+x2=2x2 ,故不正确; B. x6÷x3=x3 ,故不正确; C. (x3)2=x6 ,故正确; D. x1=,故不正确;故选C.【点睛】本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.10、B【解析】根据轴对称图形和中心对称图形的定义对各个图形进行逐一分析即可【详解】解:第一个图形是轴对称图形,但不是中心对称图形;第二个图形是中心对称图形,但不是轴对称图形;第三个图形既是轴对称图形,又是中心对称图形;第四个图形即是轴对称图形,又是中心对称图形;既是轴对称图形,又是中心对称图形的有两个,故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据题意先利用旋转的性质得到BOD=120°,则AOD=150°,然后根据弧长公式计算即可.【详解】解:扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,BOD=120°,AOD=AOB+BOD=30°+120°=150°,的长=故答案为:【点睛】本题考查了弧长的计算及旋转的性质,掌握弧长公式l=(弧长为l,圆心角度数为n,圆的半径为R)是解题的关键.12、y1<y1【解析】直接利用一次函数的性质分析得出答案【详解】解:直线经过第一、三、四象限,y随x的增大而增大,x1x1,y1与y1的大小关系为:y1y1故答案为:y1<y1【点睛】此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键13、2【解析】【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论【详解】3x=3x3+x22,x,x为正整数,x=2,故答案为:2【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x是解题的关键14、1【解析】分析:根据点在曲线上点的坐标满足方程的关系,将点(1,2)代入,得:,解得:k115、【解析】首先根据矩形的性质以及垂线的性质得到FDCABE,进而得出tanFDCtanAEB,即可得出答案.【详解】DFAE,垂足为F,AFD90°,ADFDAF90°,ADFCDF90°,DAFCDF,DAFAEB,FDCABE,tanFDCtanAEB,在矩形ABCD中,AB4,E是BC上的一点,BE3,tanFDC.故答案为.【点睛】本题主要考查了锐角三角函数的关系以及矩形的性质,根据已知得出tanFDCtanAEB是解题关键.16、1【解析】试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=3,将所求式子利用完全平方公式变形后,即mn+=3mn=16+9=1故答案为1考点:根与系数的关系17、4【解析】试题分析:根据BD和CD分别平分ABC和ACB,和EFBC,利用两直线平行,内错角相等和等量代换,求证出BE=DE,DF=FC然后即可得出答案解:在ABC中,BD和CD分别平分ABC和ACB,EBD=DBC,FCD=DCB,EFBC,EBD=DBC=EDB,FCD=DCB=FDC,BE=DE,DF=EC,EF=DE+DF,EF=EB+CF=2BE,等边ABC的边长为6,EFBC,ADE是等边三角形,EF=AE=2BE,EF=,故答案为4考点:等边三角形的判定与性质;平行线的性质三、解答题(共7小题,满分69分)18、证明见解析.【解析】由已知条件BEDF,可得出ABE=D,再利用ASA证明ABEFDC即可证明:BEDF,ABE=D,在ABE和FDC中,ABE=D,AB=FD,A=FABEFDC(ASA),AE=FC“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证ABC和FDC全等19、骑共享单车从家到单位上班花费的时间是1分钟【解析】试题分析:设骑共享单车从家到单位上班花费x分钟,找出题目中的等量关系,列出方程,求解即可.试题解析:设骑共享单车从家到单位上班花费x分钟,依题意得: 解得x=1经检验,x=1是原方程的解,且符合题意答:骑共享单车从家到单位上班花费的时间是1分钟20、(1)景点D向公路a修建的这条公路的长约是3.1km;(2)景点C与景点D之间的距离约为4km【解析】解:(1)如图,过点D作DEAC于点E,过点A作AFDB,交DB的延长线于点F,在RtDAF中,ADF=30°,AF=AD=×8=4,DF=,在RtABF中BF=3,BD=DFBF=43,sinABF=,在RtDBE中,sinDBE=,ABF=DBE,sinDBE=,DE=BDsinDBE=×(43)=3.1(km),景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知CDB=75°,由(1)可知sinDBE=0.8,所以DBE=53°,DCB=180°75°53°=52°,在RtDCE中,sinDCE=,DC=4(km),景点C与景点D之间的距离约为4km21、1- 【解析】利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可【详解】解:原式【点睛】本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键22、甲、乙两公司人均捐款分别为80元、100元【解析】试题分析:本题考察的是分式的应用题,设甲公司人均捐款x元,根据题意列出方程即可.试题解析:设甲公司人均捐款x元 解得: 经检验,为原方程的根, 80+20=100答:甲、乙两公司人均各捐款为80元、100元23、(1); (2);(3)【解析】(1)联立两直线解析式,求出交点P坐标即可;(2)由F坐标确定出OF的长,得到E的横坐标为a,代入直线OP解析式表示出E纵坐标,即为EF的长,分两种情况考虑:当时,矩形EBOF与三角形OPA重叠部分为直角三角形OEF,表示出三角形OEF面积S与a的函数关系式;当时,重合部分为直角梯形面积,求出S与a函数关系式.(3)根据(1)所求,先求得A点坐标,再确定AP和PM的长度分别是2和2,又由OP=2,得到P怎么平移会得到M,按同样的方法平移A即可得到Q.【详解】解:(1)联立得:,解得:;P的坐标为;(2)分两种情况考虑:当时,由F坐标为(a,0),得到OF=a,把E横坐标为a,代入得:即此时 当时,重合的面积就是梯形面积,F点的横坐标为a,所以E点纵坐标为 M点横坐标为:-3a+12, 所以;(3)令中的y=0,解得:x=4,则A的坐标为(4,0)则AP= ,则PM=2又OP= 点P向左平移3个单位在向下平移可以得到M1点P向右平移3个单位在向上平移可以得到M2A向左平移3个单位在向下平移可以得到 Q1(1,-)A向右平移3个单位在向上平移可以得到 Q1(7,)所以,存在Q点,且坐标是【点睛】本题考查一次函数综合题、勾股定理以及逆定理、矩形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题24、(1)y有反向值,反向距离为2;yx2有反向值,反向距离是1;(2)b±1;0n8;(3)当m2或m2时,n2,当2m2时,n2【解析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)根据题意可以求得相应的b的值;根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题【详解】(1)由题意可得,当mm+1时,该方程无解,故函数yx+1没有反向值,当m时,m±1,n1(1)2,故y有反向值,反向距离为2,当mm2,得m0或m1,n0(1)1,故yx2有反向值,反向距离是1;(2)令mm2b2m,解得,m0或mb21,反向距离为零,|b210|0,解得,b±1;令mm2b2m,解得,m0或mb21,n|b210|b21|,1b3,0n8;(3)y,当xm时,mm23m,得m0或m2,n202,m2或m2;当xm时,mm23m,解得,m0或m2,n0(2)2,2m2,由上可得,当m2或m2时,n2,当2m2时,n2【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题