2022-2023学年江苏省淮安市金湖县中考数学全真模拟试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取( )A10cm的木棒B40cm的木棒C50cm的木棒D60cm的木棒2如图所示的几何体的俯视图是( )ABCD3()A±4B4C±2D24化简的结果是()A1BCD5如图,在正八边形ABCDEFGH中,连接AC,AE,则的值是()A1BC2D6共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A1000(1+x)21000+440B1000(1+x)2440C440(1+x)21000D1000(1+2x)1000+4407九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是ABCD8如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:AEDDFB;S四边形 BCDG=CG2;若AF=2DF,则BG=6GF,其中正确的结论A只有.B只有.C只有.D.9利用运算律简便计算52×(999)+49×(999)+999正确的是A999×(52+49)=999×101=100899B999×(52+491)=999×100=99900C999×(52+49+1)=999×102=101898D999×(52+4999)=999×2=199810随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )ABCD11在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A1颗B2颗C3颗D4颗12已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x2时,y随x的增大而增大,且2x1时,y的最大值为9,则a的值为A1或2 B或C D1二、填空题:(本大题共6个小题,每小题4分,共24分)13如果分式的值为0,那么x的值为_14如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为_cm 15已知x=2是关于x的一元二次方程kx2+(k22)x+2k+4=0的一个根,则k的值为_16如图,将一对直角三角形卡片的斜边AC重合摆放,直角顶点B,D在AC的两侧,连接BD,交AC于点O,取AC,BD的中点E,F,连接EF若AB12,BC5,且ADCD,则EF的长为_17函数y中自变量x的取值范围是_,若x4,则函数值y_18如图,四边形OABC中,ABOC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若BDE、OCE的面积分别为1和9,反比例函数y=的图象经过点B,则k=_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)将二次函数的解析式化为的形式,并指出该函数图象的开口方向、顶点坐标和对称轴20(6分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值21(6分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?22(8分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?23(8分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率24(10分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?25(10分)如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G, GB=GC(1)求证:四边形ABCD是矩形;(1)若GEF的面积为1求四边形BCFE的面积;四边形ABCD的面积为 26(12分)计算:(-)-2 2()+ 27(12分)如图,AB是O的直径, O过BC的中点D,DEAC求证: BDACED参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围进而可得出结论【详解】设应选取的木棒长为x,则30cm-20cmx30cm+20cm,即10cmx50cm故选B【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键2、D【解析】试题分析:根据俯视图的作法即可得出结论从上往下看该几何体的俯视图是D故选D考点:简单几何体的三视图.3、B【解析】表示16的算术平方根,为正数,再根据二次根式的性质化简【详解】解:,故选B【点睛】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个4、A【解析】原式=(x1)2+=+=1,故选A5、B【解析】连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解【详解】解:连接AG、GE、EC,则四边形ACEG为正方形,故=故选:B【点睛】本题考查了正多边形的性质,正确作出辅助线是关键6、A【解析】根据题意可以列出相应的一元二次方程,从而可以解答本题【详解】解:由题意可得,1000(1+x)21000+440,故选:A【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.7、B【解析】解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:故选B点睛:本题考查了一元一次方程的应用找准等量关系,列方程是关键8、D【解析】解:ABCD为菱形,AB=ADAB=BD,ABD为等边三角形A=BDF=60°又AE=DF,AD=BD,AEDDFB;BGE=BDG+DBF=BDG+GDF=60°=BCD,即BGD+BCD=180°,点B、C、D、G四点共圆,BGC=BDC=60°,DGC=DBC=60° BGC=DGC=60°过点C作CMGB于M,CNGD于NCM=CN,则CBMCDN,(HL)S四边形BCDG=S四边形CMGNS四边形CMGN=1SCMG,CGM=60°,GM=CG,CM=CG,S四边形CMGN=1SCMG=1××CG×CG=CG1过点F作FPAE于P点 AF=1FD,FP:AE=DF:DA=1:3,AE=DF,AB=AD,BE=1AE,FP:BE=1:6=FG:BG,即 BG=6GF故选D9、B【解析】根据乘法分配律和有理数的混合运算法则可以解答本题【详解】原式=999×(52+49-1)=999×100=1故选B【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法10、D【解析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选:D.【点睛】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.11、B【解析】试题解析:由题意得,解得:故选B12、D【解析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a0,然后由-2x1时,y的最大值为9,可得x=1时,y=9,即可求出a【详解】二次函数y=ax2+2ax+3a2+3(其中x是自变量),对称轴是直线x=-=-1,当x2时,y随x的增大而增大,a0,-2x1时,y的最大值为9,x=1时,y=a+2a+3a2+3=9,3a2+3a-6=0,a=1,或a=-2(不合题意舍去)故选D【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a0)的图象具有如下性质:当a0时,抛物线y=ax2+bx+c(a0)的开口向上,x-时,y随x的增大而减小;x-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点当a0时,抛物线y=ax2+bx+c(a0)的开口向下,x-时,y随x的增大而增大;x-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点二、填空题:(本大题共6个小题,每小题4分,共24分)13、4【解析】,x-4=0,x+20,解得:x=4,故答案为4.14、20【解析】解:=20cm故答案为20cm15、1【解析】【分析】把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可【详解】把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2k+4=0,整理得k2+1k=0,解得k1=0,k2=1,因为k0,所以k的值为1故答案为:1【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解16、【解析】先求出BE的值,作DMAB,DNBC延长线,先证明ADMCDN(AAS),得出AM=CN,DM=DN,再根据正方形的性质得BM=BN,设AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根据BD为正方形的对角线可得出BD=, BF=BD=, EF=.【详解】ABC=ADC,A,B,C,D四点共圆,AC为直径,E为AC的中点,E为此圆圆心,F为弦BD中点,EFBD,连接BE,BE=AC=;作DMAB,DNBC延长线,BAD=BCN,在ADM和CDN中,ADMCDN(AAS),AM=CN,DM=DN,DMB=DNC=ABC=90°,四边形BNDM为矩形,又DM=DN,矩形BNDM为正方形,BM=BN,设AM=CN=x,BM=AB-AM=12-x=BN=5+x,12-x=5+x,x=,BN=,BD为正方形BNDM的对角线,BD=BN=,BF=BD=,EF=.故答案为.【点睛】本题考查了正方形的性质与全等三角形的性质,解题的关键是熟练的掌握正方形与全等三角形的性质与应用.17、x3y1【解析】根据二次根式有意义的条件求解即可即被开方数是非负数,结果是x3,y1.18、16【解析】根据题意得SBDE:SOCE=1:9,故BD:OC=1:3,设D(a,b)则A(a,0),B(a,2b),得C(0,3b),由SOCE=9得ab=8,故可得解.【详解】解:设D(a,b)则A(a,0),B(a,2b)SBDE:SOCE=1:9BD:OC=1:3C(0,3b)COE高是OA的,SOCE=3ba× =9解得ab=8k=a×2b=2ab=2×8=16故答案为16.【点睛】此题利用了:过某个点,这个点的坐标应适合这个函数解析式;所给的面积应整理为和反比例函数上的点的坐标有关的形式三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、开口方向:向上;点坐标:(-1,-3);称轴:直线.【解析】将二次函数一般式化为顶点式,再根据a的值即可确定该函数图像的开口方向、顶点坐标和对称轴【详解】解:,开口方向:向上,顶点坐标:(-1,-3),对称轴:直线.【点睛】熟练掌握将一般式化为顶点式是解题关键.20、(1)y1=t(t30)(0t30);(2)y2=;(3)上市第20天,国内、外市场的日销售总量y最大,最大值为80万件【解析】(1)根据题意得出y1与t之间是二次函数关系,然后利用待定系数法求出函数解析式;(2)利用待定系数法分别求出两个函数解析式,从而得出答案;(3)分0t20、t=20和20t30三种情况根据y=y1+y2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最值【详解】解:(1)由图表数据观察可知y1与t之间是二次函数关系,设y1=a(t0)(t30) 再代入t=5,y1=25可得a=y1=t(t30)(0t30)(2)由函数图象可知y2与t之间是分段的一次函数由图象可知:0t20时,y2=2t,当20t30时,y2=4t+120,y2=,(3)当0t20时,y=y1+y2=t(t30)+2t=80(t20)2 , 可知抛物线开口向下,t的取值范围在对称轴左侧,y随t的增大而增大,所以最大值小于当t=20时的值80,当20t30时,y=y1+y2=t(t30)4t+120=125(t5)2 , 可知抛物线开口向下,t的取值范围在对称轴右侧,y随t的增大而减小,所以最大值为当t=20时的值80,故上市第20天,国内、外市场的日销售总量y最大,最大值为80万件21、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元【解析】(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】根据题意知,;当时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.22、(1)补图见解析;(2)27°;(3)1800名【解析】(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;(2)用360°乘以对应的比例即可求解;(3)用总人数乘以对应的百分比即可求解【详解】(1)抽取的总人数是:10÷25%=40(人),在B类的人数是:40×30%=12(人).;(2)扇形统计图扇形D的圆心角的度数是:360×=27°;(3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人).考点:条形统计图、扇形统计图23、(1);(2)【解析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案【详解】(1)小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,小明选择去白鹿原游玩的概率;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率24、周瑜去世的年龄为16岁【解析】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1根据题意建立方程求出其值就可以求出其结论【详解】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1由题意得;10(x1)+xx2,解得:x15,x26当x5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x6时,周瑜年龄为16岁,完全符合题意答:周瑜去世的年龄为16岁【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键25、(1)证明见解析;(1)16;14;【解析】(1)根据平行四边形的性质得到ADBC,AB=DC,ABCD于是得到BE=CF,根据全等三角形的性质得到A=D,根据平行线的性质得到A+D=180°,由矩形的判定定理即可得到结论;(1)根据相似三角形的性质得到,求得GBC的面积为18,于是得到四边形BCFE的面积为16;根据四边形BCFE的面积为16,列方程得到BCAB=14,即可得到结论【详解】(1)证明:GB=GC,GBC=GCB,在平行四边形ABCD中,ADBC,AB=DC,ABCD,GB-GE=GC-GF,BE=CF,在ABE与DCF中,ABEDCF,A=D,ABCD,A+D=180°,A=D=90°,四边形ABCD是矩形;(1)EFBC,GFEGBC,EF=AD,EF=BC,GEF的面积为1,GBC的面积为18,四边形BCFE的面积为16,;四边形BCFE的面积为16,(EF+BC)AB=×BCAB=16,BCAB=14,四边形ABCD的面积为14,故答案为:14【点睛】本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得GFEGBC是解题的关键26、0【解析】本题涉及负指数幂、二次根式化简和绝对值3个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】原式.【点睛】本题主要考查负指数幂、二次根式化简和绝对值,熟悉掌握是关键.27、证明见解析.【解析】不难看出BDA和CED都是直角三角形,证明BDACED,只需要另外找一对角相等即可,由于AD是ABC的中线,又可证ADBC,即AD为BC边的中垂线,从而得到B=C,即可证相似【详解】AB是O直径,ADBC,又BD=CD,AB=AC,B=C,又ADB=DEC=90°,BDACED.【点睛】本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用