2022-2023学年湖北省武汉市外国语校中考数学模拟精编试卷含解析.doc
-
资源ID:87798672
资源大小:887.50KB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年湖北省武汉市外国语校中考数学模拟精编试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1随着“中国诗词大会”节目的热播,唐诗宋词精选一书也随之热销如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A一次性购买数量不超过10本时,销售价格为20元/本Ba520C一次性购买10本以上时,超过10本的那部分书的价格打八折D一次性购买20本比分两次购买且每次购买10本少花80元2关于二次函数,下列说法正确的是( )A图像与轴的交点坐标为B图像的对称轴在轴的右侧C当时,的值随值的增大而减小D的最小值为-33使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )ABCD4若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A15cm2B24cm2C39cm2D48cm25在RtABC中,C=90°,如果sinA=,那么sinB的值是()ABCD6如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则BOC的周长为()A9B10C12D147已知圆内接正三角形的面积为3,则边心距是()A2B1CD8若分式的值为0,则x的值为()A-2B0C2D±29在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数46487250650082499650007根据列表,可以估计出 m 的值是( )A5B10C15D2010如图,O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为A6BCD311下列事件中,属于不确定事件的是( )A科学实验,前100次实验都失败了,第101次实验会成功B投掷一枚骰子,朝上面出现的点数是7点C太阳从西边升起来了D用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形12滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A10分钟B13分钟C15分钟D19分钟二、填空题:(本大题共6个小题,每小题4分,共24分)13江苏省的面积约为101 600km1,这个数据用科学记数法可表示为_km114太极揉推器是一种常见的健身器材基本结构包括支架和转盘,数学兴趣小组的同学对某太极揉推器的部分数据进行了测量:如图,立柱AB的长为125cm,支架CD、CE的长分别为60cm、40cm,支点C到立柱顶点B的距离为25cm支架CD,CE与立柱AB的夹角BCD=BCE=45°,转盘的直径FG=MN=60cm,D,E分别是FG,MN的中点,且CDFG,CEMN,则两个转盘的最低点F,N距离地面的高度差为_cm(结果保留根号)15计算:.16如图,点A在双曲线上,ABx轴于B,且AOB的面积SAOB=2,则k=_17已知抛物线yx2mx2m,在自变量x的值满足1x2的情况下若对应的函数值y的最大值为6,则m的值为_.18如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0°线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,F30°.(1)求证:BECE(2)将EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)求证:BEMCEN;若AB2,求BMN面积的最大值;当旋转停止时,点B恰好在FG上(如图3),求sinEBG的值.20(6分)如下表所示,有A、B两组数:第1个数第2个数第3个数第4个数第9个数第n个数A组65258n22n5B组1471025(1)A组第4个数是 ;用含n的代数式表示B组第n个数是 ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明21(6分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F(1)求证:ADEBFE;(2)若DF平分ADC,连接CE,试判断CE和DF的位置关系,并说明理由22(8分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,m8),B(n,6)两点求一次函数与反比例函数的解析式;求AOB的面积23(8分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价元只售价元只甲种节能灯3040乙种节能灯3550求甲、乙两种节能灯各进多少只?全部售完100只节能灯后,该商场获利多少元?24(10分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款某公司为奖励员工,购买了甲种商品20件,乙种商品x()件(1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠25(10分)如图,AC是O的直径,点P在线段AC的延长线上,且PC=CO,点B在O上,且CAB=30°(1)求证:PB是O的切线;(2)若D为圆O上任一动点,O的半径为5cm时,当弧CD长为 时,四边形ADPB为菱形,当弧CD长为 时,四边形ADCB为矩形26(12分)如图,一次函数y=kx+b的图象与反比例函数y= (x0)的图象交于A(2,1),B(,n)两点,直线y=2与y轴交于点C (1)求一次函数与反比例函数的解析式; (2)求ABC的面积.27(12分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】A、根据单价总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误此题得解【详解】解:A、200÷1020(元/本),一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、(840200)÷(5010)16(元/本),16÷200.8,一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、200+16×(3010)520(元),a520,B选项正确;D、200×220016×(2010)40(元),一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误故选D【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键2、D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题详解:y=2x2+4x-1=2(x+1)2-3,当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答3、C【解析】根据已知三点和近似满足函数关系y=ax2+bx+c(a0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41旋钮的旋转角度在36°和54°之间,约为41时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点4、B【解析】试题分析:底面积是:9cm1,底面周长是6cm,则侧面积是:×6×5=15cm1则这个圆锥的全面积为:9+15=14cm1故选B考点:圆锥的计算5、A【解析】RtABC中,C=90°,sinA=,cosA=,A+B=90°,sinB=cosA=故选A6、A【解析】利用平行四边形的性质即可解决问题.【详解】四边形ABCD是平行四边形,AD=BC=3,OD=OB=2,OA=OC=4,OBC的周长=3+2+4=9,故选:A【点睛】题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.7、B【解析】根据题意画出图形,连接AO并延长交BC于点D,则ADBC,设OD=x,由三角形重心的性质得AD=3x, 利用锐角三角函数表示出BD的长,由垂径定理表示出BC的长,然后根据面积法解答即可【详解】如图, 连接AO并延长交BC于点D,则ADBC,设OD=x,则AD=3x, tanBAD=,BD= tan30°·AD=x,BC=2BD=2x, ,×2x×3x=3,x1所以该圆的内接正三边形的边心距为1,故选B【点睛】本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距8、C【解析】由题意可知:,解得:x=2,故选C.9、B【解析】由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.【详解】解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,故选择B.【点睛】本题考查了概率公式的应用.10、D【解析】解:因为AB是O的直径,所以ACB=90°,又O的直径AB垂直于弦CD,所以在RtAEC 中,A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.11、A【解析】根据事件发生的可能性大小判断相应事件的类型即可【详解】解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是必然事件,故D不符合题意;故选A【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件12、D【解析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1.016×105【解析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1|a|10,n表示整数n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂,【详解】解:101 600=1.016×105故答案为:1.016×105【点睛】本题考查科学计数法,掌握概念正确表示是本题的解题关键.14、10【解析】作FP地面于P,CJPF于J,FQPA交CD于Q,QHCJ于HNT地面于T解直角三角形求出FP、NT即可解决问题【详解】解:作FP地面于P,CJPF于J,FQPA交CD于Q,QHCJ于HNT地面于T由题意QDF,QCH都是等腰直角三角形,四边形FQHJ是矩形,DFDQ30cm,CQCDDQ603030cm,FJQH15cm,ACABBC12525100cm,PF(15100)cm,同法可求:NT(1005),两个转盘的最低点F,N距离地面的高度差为(15100)-(1005)=10故答案为: 10【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型15、3+【解析】本题涉及零指数幂、负指数幂、绝对值、特殊角的三角函数值4个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】原式=2×+2+1,=2+2+1,=3+【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数、绝对值等考点的运算16、4【解析】:由反比例函数解析式可知:系数,SAOB=2即,;又由双曲线在二、四象限k0,k=-417、m=8或【解析】求出抛物线的对称轴分三种情况进行讨论即可.【详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在1x2时,随的增大而减小,在时取得最大值,即 解得符合题意.当即时,抛物线在1x2时,在时取得最大值,即 无解.当,即时,抛物线在1x2时,随的增大而增大,在时取得最大值,即 解得符合题意.综上所述,m的值为8或故答案为:8或【点睛】考查二次函数的图象与性质,注意分类讨论,不要漏解.18、60.【解析】首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得AOCABC60°,又由AE是切线,易证得RtAOERtAOC,继而求得AOE的度数,则可求得答案【详解】设半圆的圆心为O,连接OE,OA,CD2OC2BC,OCBC,ACB90°,即ACOB,OABA,AOCABC,BAC30°,AOCABC60°,AE是切线,AEO90°,AEOACO90°,在RtAOE和RtAOC中,RtAOERtAOC(HL),AOEAOC60°,EOD180°AOEAOC60°,点E所对应的量角器上的刻度数是60°,故答案为:60.【点睛】本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)详见解析;(1)详见解析;1;.【解析】(1)只要证明BAECDE即可;(1)利用(1)可知EBC是等腰直角三角形,根据ASA即可证明;构建二次函数,利用二次函数的性质即可解决问题;如图3中,作EHBG于H设NG=m,则BG=1m,BN=EN=m,EB=m利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,四边形ABCD是矩形,AB=DC,A=D=90°,E是AD中点,AE=DE,BAECDE,BE=CE(1)解:如图1中,由(1)可知,EBC是等腰直角三角形,EBC=ECB=45°,ABC=BCD=90°,EBM=ECN=45°,MEN=BEC=90°,BEM=CEN,EB=EC,BEMCEN;BEMCEN,BM=CN,设BM=CN=x,则BN=4-x,SBMN=x(4-x)=-(x-1)1+1,-0,x=1时,BMN的面积最大,最大值为1解:如图3中,作EHBG于H设NG=m,则BG=1m,BN=EN=m,EB=mEG=m+m=(1+)m,SBEG=EGBN=BGEH,EH=m,在RtEBH中,sinEBH=【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,20、(1)3;(2),理由见解析;理由见解析(3)不存在,理由见解析【解析】(1)将n=4代入n2-2n-5中即可求解;(2)当n=1,2,3,9,时对应的数分别为3×1-2,3×2-2,3×3-2,3×9-2,由此可归纳出第n个数是3n-2;(3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n2-2n-5=3n-2有无正整数解的问题【详解】解:(1)A组第n个数为n2-2n-5,A组第4个数是42-2×4-5=3,故答案为3;(2)第n个数是理由如下:第1个数为1,可写成3×1-2;第2个数为4,可写成3×2-2;第3个数为7,可写成3×3-2;第4个数为10,可写成3×4-2;第9个数为25,可写成3×9-2;第n个数为3n-2;故答案为3n-2;(3)不存在同一位置上存在两个数据相等;由题意得,解之得,由于是正整数,所以不存在列上两个数相等【点睛】本题考查了数字的变化类,正确的找出规律是解题的关键21、(1)见解析;(1)见解析【解析】(1)由全等三角形的判定定理AAS证得结论(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,1=1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CEDF【详解】解:(1)证明:如图,四边形ABCD是平行四边形,ADBC又点F在CB的延长线上,ADCF1=1点E是AB边的中点,AE=BE,在ADE与BFE中,ADEBFE(AAS)(1)CEDF理由如下:如图,连接CE,由(1)知,ADEBFE,DE=FE,即点E是DF的中点,1=1DF平分ADC,1=22=1CD=CFCEDF22、(1)y=-,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解试题解析:(1)将A(3,m+8)代入反比例函数y=得,=m+8,解得m=6,m+8=6+8=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x1;(2)设AB与x轴相交于点C,令2x1=0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=×2×3+×2×1,=3+1,=1考点:反比例函数与一次函数的交点问题23、甲、乙两种节能灯分别购进40、60只;商场获利1300元【解析】(1)利用节能灯数量和所用的价钱建立方程组即可;(2)每种灯的数量乘以每只灯的利润,最后求出之和即可【详解】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得 ,答:甲、乙两种节能灯分别购进40、60只(2)商场获利元,答:商场获利1300元【点睛】此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量24、(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低【解析】(1)根据方案即可列出函数关系式;(2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.解:(1) 得:; 得:;(2) ,因为w是m的一次函数,k=-4<0, 所以w随的增加而减小,m当m=20时,w取得最小值. 即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品. 25、(1)证明见解析(2)cm,cm【解析】【分析】(1)连接OB,要证明PB是切线,只需证明OBPB即可;(2)利用菱形、矩形的性质,求出圆心角COD即可解决问题.【详解】(1)如图连接OB、BC,OA=OB,OAB=OBA=30°,COB=OAB=OBA=60°,OB=OC,OBC是等边三角形,BC=OC,PC=OA=OC,BC=CO=CP,PBO=90°,OBPB,PB是O的切线;(2)的长为cm时,四边形ADPB是菱形,四边形ADPB是菱形,ADB=ACB=60°,COD=2CAD=60°,的长=cm;当四边形ADCB是矩形时,易知COD=120°,的长=cm,故答案为:cm, cm.【点睛】本题考查了圆的综合题,涉及到切线的判定、矩形的性质、菱形的性质、弧长公式等知识,准确添加辅助线、灵活应用相关知识解决问题是关键.26、(1)y=2x5,;(2)【解析】试题分析:(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,再将B坐标代入求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)用矩形面积减去周围三个小三角形的面积,即可求出三角形ABC面积试题解析:(1)把A(2,1)代入反比例解析式得:1=,即m=2,反比例解析式为,把B(,n)代入反比例解析式得:n=4,即B(,4),把A与B坐标代入y=kx+b中得:,解得:k=2,b=5,则一次函数解析式为y=2x5;(2)如图,SABC=考点:反比例函数与一次函数的交点问题;一次函数及其应用;反比例函数及其应用27、(1)购进甲种纪念品每件需100元,购进乙种纪念品每件需50元(2)有三种进货方案方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件(3)若全部销售完,方案一获利最大,最大利润是1800元【解析】分析:(1)设购进甲种纪念品每件价格为x元,乙种纪念币每件价格为y元,根据题意得出关于x和y的二元一次方程组,解方程组即可得出结论;(2)设购进甲种纪念品a件,根据题意列出关于x的一元一次不等式,解不等式得出a的取值范围,即可得出结论;(3)找出总利润关于购买甲种纪念品a件的函数关系式,由函数的增减性确定总利润取最值时a的值,从而得出结论详解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元由题意得:,解得:答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元(2)设购进甲种纪念品a(a60)件,则购进乙种纪念品(80a)件由题意得:100a+50(80a)7100解得a1又a60所以a可取60、61、1即有三种进货方案方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件(3)设利润为W,则W=20a+30(80a)=10a+2400所以W是a的一次函数,100,W随a的增大而减小所以当a最小时,W最大此时W=10×60+2400=1800答:若全部销售完,方案一获利最大,最大利润是1800元点睛:本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.