2022-2023学年湖北省武汉市新洲区达标名校中考数学全真模拟试卷含解析.doc
-
资源ID:87798823
资源大小:878.50KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年湖北省武汉市新洲区达标名校中考数学全真模拟试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图图形中,可以看作中心对称图形的是()ABCD2一元二次方程x2+2x15=0的两个根为()Ax1=3,x2=5 Bx1=3,x2=5Cx1=3,x2=5 Dx1=3,x2=53等腰中,D是AC的中点,于E,交BA的延长线于F,若,则的面积为( )A40B46C48D504下列运算正确的是()Aa3a2=a6B(x3)3=x6Cx5+x5=x10Da8÷a4=a45如图,一段抛物线:y=x(x5)(0x5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2, 交x轴于点A2;将C2绕点A2旋转180°得C3, 交x轴于点A3;如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为( )A4B4C6D66如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角当点P第2018次碰到矩形的边时,点P的坐标为( )A(1,4)B(7,4)C(6,4)D(8,3)7已知二次函数y=(x+a)(xa1),点P(x0,m),点Q(1,n)都在该函数图象上,若mn,则x0的取值范围是()A0x01B0x01且x0Cx00或x01D0x018如图,向四个形状不同高同为h的水瓶中注水,注满为止如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()ABCD9下列计算中,正确的是( )ABCD10对于实数x,我们规定表示不大于x的最大整数,例如,若,则x的取值可以是( )A40B45C51D5611下列计算正确的是()Ax2+x3=x5Bx2x3=x5C(x2)3=x8Dx6÷x2=x312根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次3.82亿用科学记数法可以表示为( )A3.82×107B3.82×108C3.82×109D0.382×1010二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,平面直角坐标系中,经过点B(4,0)的直线ykx+b与直线ymx+2相交于点A(,-1),则不等式mx+2kx+b0的解集为_14如图,点A在反比例函数y=(x0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PA:PB=1:2,则正方形OABC的面积=_15如图,在RtABC中,B90°,AB3,BC4,将ABC折叠,使点B恰好落在边AC上,与点B重合,AE为折痕,则EB _16如图1,点P从ABC的顶点B出发,沿BCA匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则ABC的面积是_17已知扇形的弧长为,圆心角为45°,则扇形半径为_18如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0t8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8t24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)求w关于t的函数解析式;该药厂销售部门分析认为,336w513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值20(6分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元求y与x的函数解析式,请直接写出x的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?21(6分)计算:(2)0+()1+4cos30°|4|22(8分)小敏参加答题游戏,答对最后两道单选题就顺利通关第一道单选题有3个选项,第二道单选题有4个选项,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项假设第一道题的正确选项是,第二道题的正确选项是,解答下列问题: (1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是_;(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;(3)小敏选第_道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大23(8分)如图,AB为圆O的直径,点C为圆O上一点,若BAC=CAM,过点C作直线l垂直于射线AM,垂足为点D(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且CAB=30°,求AD的长24(10分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元物价部门规定其销售单价不高于每千克60元,不低于每千克30元经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时 ,y=80;x=50时,y=1在销售过程中,每天还要支付其他费用450元求出y与x的函数关系式,并写出自变量x的取值范围求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式当销售单价为多少元时,该公司日获利最大?最大获利是多少元?25(10分)在一个不透明的盒子中,装有3个分别写有数字1,2,3的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字(1)用列表法或树状图法写出所有可能出现的结果;(2)求两次取出的小球上的数字之和为奇数的概率P26(12分)先化简,再求值,其中x=127(12分)在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点求的值;横、纵坐标都是整数的点叫做整点记图象在点,之间的部分与线段,围成的区域(不含边界)为当时,直接写出区域内的整点个数;若区域内恰有4个整点,结合函数图象,求的取值范围参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选D【点睛】此题主要考查了中心对称图形,关键掌握中心对称图形定义2、C【解析】运用配方法解方程即可.【详解】解:x2+2x15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故选择C.【点睛】本题考查了解一元二次方程,选择合适的解方程方法是解题关键.3、C【解析】CEBD,BEF=90°,BAC=90°,CAF=90°,FAC=BAD=90°,ABD+F=90°,ACF+F=90°,ABD=ACF,又ABAC,ABDACF,AD=AF,AB=AC,D为AC中点,AB=AC=2AD=2AF,BF=AB+AF=12,3AF=12,AF=4,AB=AC=2AF=8,SFBC= ×BF×AC=×12×8=48,故选C4、D【解析】各项计算得到结果,即可作出判断【详解】A、原式=a5,不符合题意;B、原式=x9,不符合题意;C、原式=2x5,不符合题意;D、原式=-a4,符合题意,故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键5、C【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=4032,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可详解:当y=0时,x(x5)=0,解得x1=0,x2=5,则A1(5,0),OA1=5,将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;如此进行下去,得到一“波浪线”,A1A2=A2A3=OA1=5,抛物线C404的解析式为y=(x5×403)(x5×404),即y=(x2015)(x2020),当x=2018时,y=(20182015)(20182020)=1,即m=1故选C点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键6、B【解析】如图,经过6次反弹后动点回到出发点(0,3),2018÷6=3362,当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4)故选C7、D【解析】分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答详解:二次函数y=(x+a)(xa1),当y=0时,x1=a,x2=a+1,对称轴为:x= 当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由mn,得:0x0; 当P在对称轴的右侧时,y随x的增大而增大,由mn,得:x01 综上所述:mn,所求x0的取值范围0x01 故选D点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏8、D【解析】根据一次函数的性质结合题目中的条件解答即可.【详解】解:由题可得,水深与注水量之间成正比例关系,随着水的深度变高,需要的注水量也是均匀升高,水瓶的形状是圆柱,故选:D【点睛】此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.9、D【解析】根据积的乘方、合并同类项、同底数幂的除法以及幂的乘方进行计算即可【详解】A、(2a)3=8a3,故本选项错误;B、a3+a2不能合并,故本选项错误;C、a8÷a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选D【点睛】本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键10、C【解析】解:根据定义,得解得:故选C11、B【解析】分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案详解:A、不是同类项,无法计算,故此选项错误;B、 正确;C、 故此选项错误;D、 故此选项错误;故选:B点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键12、B【解析】根据题目中的数据可以用科学记数法表示出来,本题得以解决【详解】解:3.82亿=3.82×108,故选B【点睛】本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法二、填空题:(本大题共6个小题,每小题4分,共24分)13、4x【解析】根据函数的图像,可知不等式mx+2kx+b0的解集就是y=mx+2在函数y=kx+b的下面,且它们的值小于0的解集是4x.故答案为4x.14、1.【解析】根据题意作出合适的辅助线,然后根据正方形的性质和反比例函数的性质,相似三角形的判定和性质、勾股定理可以求得AB的长【详解】解:由题意可得:OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,),作AEx轴于点EPAO=OEA=90°,POA+AOE=90°,AOE+OAE=90°,POA=OAE,POAOAE,=,即=,解得:m=1或m=1(舍去),点A的坐标为(1,3),OA=,正方形OABC的面积=OA2=1故答案为1【点睛】本题考查了反比例函数图象点的坐标特征、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答15、1.5【解析】在RtABC中,将ABC折叠得ABE,ABAB,BEBE,BC531设BEBEx,则CE4x在RtBCE中,CE1BE1BC1,(4x)1x111解之得16、12【解析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出线段长度解答【详解】根据题意观察图象可得BC=5,点P在AC上运动时,BPAC时,BP有最小值,观察图象可得,BP的最小值为4,即BPAC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型17、1【解析】根据弧长公式l=代入求解即可【详解】解:,故答案为1【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=18、同位角相等,两直线平行【解析】试题解析:利用三角板中两个60°相等,可判定平行考点:平行线的判定三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)P=t+2;(2)当0t8时,w=240;当8t12时,w=2t2+12t+16;当12t24时,w=t2+42t+88;此范围所对应的月销售量P的最小值为12吨,最大值为19吨【解析】分析:(1)设8t24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)分0t8、8t12和12t24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;求出8t12和12t24时,月毛利润w在满足336w513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案详解:(1)设8t24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,P=t+2;(2)当0t8时,w=(2t+8)×=240;当8t12时,w=(2t+8)(t+2)=2t2+12t+16;当12t24时,w=(-t+44)(t+2)=-t2+42t+88;当8t12时,w=2t2+12t+16=2(t+3)2-2,8t12时,w随t的增大而增大,当2(t+3)2-2=336时,解题t=10或t=-16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12t24时,w=-t2+42t+88=-(t-21)2+529,当t=12时,w取得最小值448,由-(t-21)2+529=513得t=17或t=25,当12t17时,448w513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨点睛:本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336w513所对应的t的取值范围是解题的关键20、 (1) 21x62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元【解析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据AB两种车至少要能坐1441人即可得取x的取值范围;(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.【详解】(1)由题意得y380x280(62x)100x17360,30x20(62x)1441,x20.1,21x62且x为整数;(2)由题意得100x1736021940,解得x45.8,21x45且x为整数,共有25种租车方案,k100>0,y随x的增大而增大,当x21时,y有最小值, y最小100×211736019460,故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元【点睛】本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题21、4【解析】直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案【详解】(2)0+()1+4cos30°|4|=1+3+4×(42)=4+24+2=4【点睛】此题主要考查了实数运算,正确化简各数是解题关键22、(1);(2);(3)一.【解析】(1)直接利用概率公式求解;(2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;(3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”【详解】解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=;故答案为;(2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是理由如下:画树状图为:(用Z表示正确选项,C表示错误选项)共有9种等可能的结果数,其中小颖顺利通关的结果数为1,所以小敏顺利通关的概率=;(3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=,由于,所以建议小敏在答第一道题时使用“求助”【点睛】本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.23、(1)CD与圆O的位置关系是相切,理由详见解析;(2) AD=【解析】(1)连接OC,求出OC和AD平行,求出OCCD,根据切线的判定得出即可;(2)连接BC,解直角三角形求出BC和AC,求出BCACDA,得出比例式,代入求出即可【详解】(1)CD与圆O的位置关系是相切,理由是:连接OC,OA=OC,OCA=CAB,CAB=CAD,OCA=CAD,OCAD,CDAD,OCCD,OC为半径,CD与圆O的位置关系是相切;(2)连接BC,AB是O的直径,BCA=90°,圆O的半径为3,AB=6,CAB=30°, BCA=CDA=90°,CAB=CAD,CABDAC, 【点睛】本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键24、(1)y=2x+200(30x60)(2)w=2(x65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】(1)设出一次函数解析式,把相应数值代入即可(2)根据利润计算公式列式即可;(3)进行配方求值即可【详解】(1)设y=kx+b,根据题意得解得:y=2x+200(30x60)(2)W=(x30)(2x+200)450=2x2+260x6450=2(x65)2 +2000)(3)W =2(x65)2 +200030x60x=60时,w有最大值为1950元当销售单价为60元时,该公司日获利最大,为1950元 考点:二次函数的应用25、 (1见解析;(2).【解析】(1)根据题意先画出树状图,得出所有可能出现的结果数;(2)根据(1)可得共有9种情况,两次取出小球上的数字和为奇数的情况,再根据概率公式即可得出答案【详解】(1)列表得,(2)两次取出的小球上的数字之和为奇数的共有4种,P两次取出的小球上数字之和为奇数的概率P=【点睛】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件树状图法适用于两步或两步以上完成的事件解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比26、1【解析】先根据分式的运算法则进行化简,再代入求值.【详解】解:原式=()×=×=;将x=1代入原式=1【点睛】分式的化简求值27、(1)4;(2)3个(1,0),(2,0),(3,0)或【解析】分析:(1)根据点(4,1)在()的图象上,即可求出的值;(2)当时,根据整点的概念,直接写出区域内的整点个数即可.分当直线过(4,0)时,当直线过(5,0)时,当直线过(1,2)时,当直线过(1,3)时四种情况进行讨论即可.详解:(1)解:点(4,1)在()的图象上,(2) 3个(1,0),(2,0),(3,0) 当直线过(4,0)时:,解得当直线过(5,0)时:,解得当直线过(1,2)时:,解得当直线过(1,3)时:,解得综上所述:或点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.