2022-2023学年福建省漳州市龙文区龙文中学中考三模数学试题含解析.doc
-
资源ID:87799122
资源大小:626.50KB
全文页数:15页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年福建省漳州市龙文区龙文中学中考三模数学试题含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,在RtABC中,C=90°,CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A1B2C3D42如图,在中,D、E分别在边AB、AC上,交AB于F,那么下列比例式中正确的是ABCD3如图,O的半径OD弦AB于点C,连结AO并延长交O于点E,连结EC若AB=8,CD=2,则EC的长为()AB8CD4长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A6.7×106 B6.7×106 C6.7×105 D0.67×1075已知抛物线yx2+3向左平移2个单位,那么平移后的抛物线表达式是()Ay(x+2)2+3 By(x2)2+3 Cyx2+1 Dyx2+56如图,已知在RtABC中,ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:EDBC;A=EBA;EB平分AED;ED=AB中,一定正确的是( )ABCD7已知a为整数,且<a<,则a等于A1B2C3D48已知x1,x2是关于x的方程x2ax2b0的两个实数根,且x1x22,x1·x21,则ba的值是( )ABC4D19有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )ABCD10如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是()A(1,4)B(4,3)C(2,4)D(4,1)二、填空题(本大题共6个小题,每小题3分,共18分)11某航班每次飞行约有111名乘客,若飞机失事的概率为p=1111 15,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿41万元人民币 平均来说,保险公司应向每位乘客至少收取_元保险费才能保证不亏本12如图,ABC中,AB6,AC4,AD、AE分别是其角平分线和中线,过点C作CGAD于F,交AB于G,连接EF,则线段EF的长为_13关于x的一元二次方程ax2x=0有实数根,则a的取值范围为_14已知函数y=-1,给出一下结论:y的值随x的增大而减小此函数的图形与x轴的交点为(1,0)当x>0时,y的值随x的增大而越来越接近-1当x时,y的取值范围是y1以上结论正确的是_(填序号)15如图,正ABC 的边长为 2,顶点 B、C 在半径为 的圆上,顶点 A在圆内,将正ABC 绕点 B 逆时针旋转,当点 A 第一次落在圆上时,则点 C 运动的路线长为 (结果保留);若 A 点落在圆上记做第 1 次旋转,将ABC 绕点 A 逆时针旋转,当点 C 第一次落在圆上记做第 2 次旋转,再绕 C 将ABC 逆时针旋转,当点 B 第一次落在圆上,记做第 3 次旋转,若此旋转下去,当ABC 完成第 2017 次旋转时,BC 边共回到原来位置 次16已知a+ 3,则的值是_三、解答题(共8题,共72分)17(8分)在等边ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.(1)依题意补全图1,并求BEC的度数;(2)如图2,当MAC30°时,判断线段BE与DE之间的数量关系,并加以证明;(3)若0°MAC120°,当线段DE2BE时,直接写出MAC的度数.18(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F求证:OEOF19(8分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一20.04二100.2三14b四a0.32五80.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有 名学生参加;(2)直接写出表中a= ,b= ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 20(8分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了_名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.21(8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使CAD=30,CBD=60求AB的长(精确到0.1米,参考数据:);已知本路段对校车限速为40千米小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由22(10分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN23(12分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积24如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DAAB于A,CBAB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】试题分析:由角平分线和线段垂直平分线的性质可求得B=CAD=DAB=30°,DE垂直平分AB,DA=DB,B=DAB,AD平分CAB,CAD=DAB, C=90°,3CAD=90°,CAD=30°, AD平分CAB,DEAB,CDAC, CD=DE=BD, BC=3, CD=DE=1考点:线段垂直平分线的性质2、C【解析】根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断【详解】A、EFCD,DEBC,CEAC,故本选项错误;B、EFCD,DEBC,ADDF,故本选项错误;C、EFCD,DEBC,故本选项正确;D、EFCD,DEBC,ADDF,故本选项错误.故选C.【点睛】本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健3、D【解析】O的半径OD弦AB于点C,AB=8,AC=AB=1设O的半径为r,则OC=r2,在RtAOC中,AC=1,OC=r2,OA2=AC2+OC2,即r2=12+(r2)2,解得r=2AE=2r=3连接BE,AE是O的直径,ABE=90°在RtABE中,AE=3,AB=8,在RtBCE中,BE=6,BC=1,故选D4、A【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:6 700 000=6.7×106,故选:A【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值5、A【解析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线yx23向左平移2个单位可得y(x2)23,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.6、B【解析】解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP,D为BC的中点,PD垂直平分BC,EDBC正确.ABC=90°,PDAB.E为AC的中点,EC=EA,EB=EC.A=EBA正确;EB平分AED错误;ED=AB正确.正确的有.故选B考点:线段垂直平分线的性质.7、B【解析】直接利用,接近的整数是1,进而得出答案【详解】a为整数,且<a<,a=1故选:【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键8、A【解析】根据根与系数的关系和已知x1+x2和x1x2的值,可求a、b的值,再代入求值即可【详解】解:x1,x2是关于x的方程x2+ax2b=0的两实数根,x1+x2=a=2,x1x2=2b=1,解得a=2,b=,ba=()2=故选A9、C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形故选C考点:简单组合体的三视图10、D【解析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p(0,1)、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、21【解析】每次约有111名乘客,如飞机一旦失事,每位乘客赔偿41万人民币,共计4111万元,由题意可得一次飞行中飞机失事的概率为P=1.11115,所以赔偿的钱数为41111111×1.11115=2111元,即可得至少应该收取保险费每人 =21元12、1【解析】在AGF和ACF中,AGFACF,AG=AC=4,GF=CF,则BG=ABAG=64=2.又BE=CE,EF是BCG的中位线,EF=BG=1.故答案是:1.13、a1且a1【解析】利用一元二次方程的定义和判别式的意义得到1且=(1)24a()1,然后求出两个不等式的公共部分即可【详解】根据题意得a1且=(1)24a()1,解得:a1且a1故答案为a1且a1【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a1)的根与=b24ac有如下关系:当1时,方程有两个不相等的两个实数根;当=1时,方程有两个相等的两个实数根;当1时,方程无实数根14、【解析】(1)因为函数的图象有两个分支,在每个分支上y随x的增大而减小,所以结论错误;(2)由解得:,的图象与x轴的交点为(1,0),故中结论正确;(3)由可知当x>0时,y的值随x的增大而越来越接近-1,故中结论正确;(4)因为在中,当时,故中结论错误;综上所述,正确的结论是.故答案为:.15、,1.【解析】首先连接OA、OB、OC,再求出CBC的大小,进而利用弧长公式问题即可解决因为ABC是三边在正方形CBAC上,BC边每12次回到原来位置,2017÷12=1.08,推出当ABC完成第2017次旋转时,BC边共回到原来位置1次.【详解】如图,连接OA、OB、OCOB=OC=,BC=2, OBC是等腰直角三角形,OBC=45°;同理可证:OBA=45°,ABC=90°;ABC=60°,ABA=90°-60°=30°,CBC=ABA=30°,当点A第一次落在圆上时,则点C运动的路线长为:ABC是三边在正方形CBAC上,BC边每12次回到原来位置,2017÷12=1.08,当ABC完成第2017次旋转时,BC边共回到原来位置1次,故答案为:,1【点睛】本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题16、7【解析】根据完全平方公式可得:原式=三、解答题(共8题,共72分)17、(1)补全图形如图1所示,见解析,BEC60°;(2)BE2DE,见解析;(3)MAC90°.【解析】(1)根据轴对称作出图形,先判断出ABDADBy,再利用三角形的内角和得出x+y即可得出结论;(2)同(1)的方法判断出四边形ABCD是菱形,进而得出CBD30°,进而得出BCD90°,即可得出结论;(3)先作出EF2BE,进而判断出EFCE,再判断出CBE90°,进而得出BCE30°,得出AEC60°,即可得出结论.【详解】(1)补全图形如图1所示,根据轴对称得,ADAC,DAECAEx,DEMCEM.ABC是等边三角形,ABAC,BAC60°.ABAD.ABDADBy.在ABD中,2x+2y+60°180°,x+y60°.DEMCEMx+y60°.BEC60°;(2)BE2DE,证明:ABC是等边三角形,ABBCAC,由对称知,ADAC,CAD2CAM60°,ACD是等边三角形,CDAD,ABBCCDAD,四边形ABCD是菱形,且BAD2CAD120°,ABC60°,ABDDBC30°,由(1)知,BEC60°,ECB90°.BE2CE.CEDE,BE2DE.(3)如图3,(本身点C,A,D在同一条直线上,为了说明CBD90°,画图时,没画在一条直线上)延长EB至F使BEBF,EF2BE,由轴对称得,DECE,DE2BE,CE2BE,EFCE,连接CF,同(1)的方法得,BEC60°,CEF是等边三角形,BEBF,CBE90°,BCE30°,ACE30°,AEDAEC,BEC60°,AEC60°,MAC180°AECACE90°.【点睛】此题是三角形综合题,主要考查了等边三角形的判定和性质,轴对称的性质,等腰三角形的性质,三角形的内角和定理,作出图形是解本题的关键.18、见解析【解析】由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得AEOCFO,由全等三角形的对应边相等,可得OE=OF【详解】证明:四边形ABCD是平行四边形,OA=OC,ABDC,EAO=FCO,在AEO和CFO中,AEOCFO(ASA),OE=OF.【点睛】本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.19、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)2÷0.04=50(2)50×0.32=16 14÷50=0.28(3)(4)(0.32+0.16)×100%=48%考点:频数分布直方图20、50 见解析(3)115.2° (4) 【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=5015916=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.21、(1)24.2米(2) 超速,理由见解析【解析】(1)分别在RtADC与RtBDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速【详解】解:(1)由題意得,在RtADC中,在RtBDC中,AB=ADBD=(米)(2)汽车从A到B用时2秒,速度为24.2÷2=12.1(米/秒),12.1米/秒=43.56千米/小时,该车速度为43.56千米/小时43.56千米/小时大于40千米/小时,此校车在AB路段超速22、证明见解析.【解析】试题分析:作于点F,然后证明 ,从而求出所所以BM与CN的长度相等试题解析:在矩形ABCD中,AD=2AB,E是AD的中点,作EFBC于点F,则有AB=AE=EF=FC, AEM=FEN,在RtAME和RtFNE中,E为AB的中点,AB=CF,AEM=FEN,AE=EF,MAE=NFE,RtAMERtFNE,AM=FN,MB=CN.23、(1)矩形的周长为4m;(2)矩形的面积为1【解析】(1)根据题意和矩形的周长公式列出代数式解答即可(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:mn,矩形的宽为:m+n,矩形的周长为:2(m-n)+(m+n)=4m;(2)矩形的面积为S=(m+n)(mn)=m2-n2,当m=7,n=4时,S=72-42=1【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答24、20千米【解析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10x,将DA=8,CB=2代入关系式即可求得【详解】解:设基地E应建在离A站x千米的地方则BE=(50x)千米在RtADE中,根据勾股定理得:AD2+AE2=DE2302+x2=DE2在RtCBE中,根据勾股定理得:CB2+BE2=CE2202+(50x)2=CE2又C、D两村到E点的距离相等DE=CEDE2=CE2302+x2=202+(50x)2解得x=20基地E应建在离A站20千米的地方考点:勾股定理的应用