2022-2023学年西省渭南市富平县中考三模数学试题含解析.doc
-
资源ID:87799286
资源大小:812.50KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年西省渭南市富平县中考三模数学试题含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元ABCD2如图,已知是的角平分线,是的垂直平分线,则的长为( )A6B5C4D3如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为()A12cmB12cmC24cmD24cm4若二次函数y=-x2+bx+c与x轴有两个交点(m,0),(m-6,0),该函数图像向下平移n个单位长度时与x轴有且只有一个交点,则n的值是( )A3B6C9D365下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )ABCD64的绝对值是( )A4BC4D7如图所示,有一条线段是()的中线,该线段是( ). A线段GHB线段ADC线段AED线段AF8已知函数yax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c40的根的情况是A有两个相等的实数根B有两个异号的实数根C有两个不相等的实数根D没有实数根9在下列实数中,3,0,2,1中,绝对值最小的数是()A3B0CD110下列计算正确的是( )A B C D二、填空题(本大题共6个小题,每小题3分,共18分)11如图1,点P从扇形AOB的O点出发,沿OAB0以1cm/s的速度匀速运动,图2是点P运动时,线段OP的长度y随时间x变化的关系图象,则扇形AOB中弦AB的长度为_cm12如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升_cm13如图,小红作出了边长为1的第1个正A1B1C1,算出了正A1B1C1的面积,然后分别取A1B1C1三边的中点A2,B2,C2,作出了第2个正A2B2C2,算出了正A2B2C2的面积,用同样的方法,作出了第3个正A3B3C3,算出了正A3B3C3的面积,由此可得,第8个正A8B8C8的面积是_14函数y的自变量x的取值范围为_15已知抛物线y=,那么抛物线在y轴右侧部分是_(填“上升的”或“下降的”)16如果两圆的半径之比为,当这两圆内切时圆心距为3,那么当这两圆相交时,圆心距d的取值范围是_.三、解答题(共8题,共72分)17(8分)如图1,反比例函数(x0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,BAC75°,ADy轴,垂足为D(1)求k的值;(2)求tanDAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线lx轴,与AC相交于点N,连接CM,求CMN面积的最大值18(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表组别分数段频次频率A60x70170.17B 70x80 30 aC 80x90 b 0.45D 90x100 8 0.08请根据所给信息,解答以下问题:表中a=_,b=_;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率19(8分)如图所示,在ABC中,BO、CO是角平分线ABC50°,ACB60°,求BOC的度数,并说明理由题(1)中,如将“ABC50°,ACB60°”改为“A70°”,求BOC的度数若An°,求BOC的度数20(8分)计算:3tan30°+|2|(3)0(1)2018.21(8分)如图,点是线段的中点,求证:22(10分)如图,半圆O的直径AB5cm,点M在AB上且AM1cm,点P是半圆O上的动点,过点B作BQPM交PM(或PM的延长线)于点Q设PMxcm,BQycm(当点P与点A或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm11.522.533.54y/cm03.7_3.83.32.5_(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60°时,PM的长度约为_cm23(12分)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好此时,路灯的灯柱AB的高应该设计为多少米(结果保留根号)24如图,四边形ABCD中,E点在AD上,其中BAE=BCE=ACD=90°,且BC=CE,求证:ABC与DEC全等参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得0.8×200=x+40解得:x=120答:商品进价为120元故选:B【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键2、D【解析】根据ED是BC的垂直平分线、BD是角平分线以及A=90°可求得C=DBC=ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】ED是BC的垂直平分线,DB=DC,C=DBC,BD是ABC的角平分线,ABD=DBC,A=90°,C+ABD+DBC=90°,C=DBC=ABD=30°,BD=2AD=6,CD=6,CE =3,故选D【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.3、D【解析】过A作ADBF于D,根据45°角的三角函数值可求出AB的长度,根据含30°角的直角三角形的性质求出斜边AC的长即可.【详解】如图,过A作ADBF于D,ABD=45°,AD=12,=12,又RtABC中,C=30°,AC=2AB=24,故选:D【点睛】本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.4、C【解析】设交点式为y=-(x-m)(x-m+6),在把它配成顶点式得到y=-x-(m-3)2+1,则抛物线的顶点坐标为(m-3,1),然后利用抛物线的平移可确定n的值【详解】设抛物线解析式为y=-(x-m)(x-m+6),y=-x2-2(m-3)x+(m-3)2-1=-x-(m-3)2+1,抛物线的顶点坐标为(m-3,1),该函数图象向下平移1个单位长度时顶点落在x轴上,即抛物线与x轴有且只有一个交点,即n=1故选C【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质5、C【解析】根据轴对称图形与中心对称图形的概念求解【详解】A不是轴对称图形,也不是中心对称图形故错误;B不是轴对称图形,也不是中心对称图形故错误;C是轴对称图形,也是中心对称图形故正确;D不是轴对称图形,是中心对称图形故错误故选C【点睛】掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合6、A【解析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.7、B【解析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得【详解】根据三角形中线的定义知:线段AD是ABC的中线故选B【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线8、A【解析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c40的根的情况即是判断函数yax2+bx+c的图象与直线y4交点的情况【详解】函数的顶点的纵坐标为4,直线y4与抛物线只有一个交点,方程ax2+bx+c40有两个相等的实数根,故选A【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.9、B【解析】|3|=3,|=,|0|=0,|2|=2,|1|=1,3210,绝对值最小的数是0,故选:B10、D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确故选D二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】由图2可以计算出OB的长度,然后利用OBOA可以计算出通过弦AB的长度.【详解】由图2得通过OB所用的时间为s,则OB的长度为1×22cm,则通过弧AB的时间为s,则弧长AB为,利用弧长公式,得出AOB120°,即可以算出AB为.【点睛】本题主要考查了从图中提取信息的能力和弧长公式的运用及转换,熟练运用公式是本题的解题关键.12、10或1【解析】分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.【详解】如图,作半径于C,连接OB,由垂径定理得:=AB=×60=30cm,在中,当水位上升到圆心以下时 水面宽80cm时,则,水面上升的高度为:;当水位上升到圆心以上时,水面上升的高度为:,综上可得,水面上升的高度为30cm或1cm,故答案为:10或1【点睛】本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键13、【解析】根据相似三角形的性质,先求出正A2B2C2,正A3B3C3的面积,依此类推AnBnCn的面积是,从而求出第8个正A8B8C8的面积【详解】正A1B1C1的面积是,而A2B2C2与A1B1C1相似,并且相似比是1:2,则面积的比是,则正A2B2C2的面积是×;因而正A3B3C3与正A2B2C2的面积的比也是,面积是×()2;依此类推AnBnCn与An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1所以第8个正A8B8C8的面积是×()7=故答案为【点睛】本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键14、x1【解析】试题分析:由题意得,x+10,解得x1故答案为x1考点:函数自变量的取值范围15、上升的【解析】抛物线y=x2-1开口向上,对称轴为x=0 (y 轴),在y 轴右侧部分抛物线呈上升趋势故答案为:上升的【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.16、.【解析】先根据比例式设两圆半径分别为,根据内切时圆心距列出等式求出半径,然后利用相交时圆心距与半径的关系求解.【详解】解:设两圆半径分别为,由题意,得3x-2x=3,解得,则两圆半径分别为,所以当这两圆相交时,圆心距d的取值范围是,即,故答案为.【点睛】本题考查了圆和圆的位置与两圆的圆心距、半径的数量之间的关系,熟练掌握圆心距与圆位置关系的数量关系是解决本题的关键.三、解答题(共8题,共72分)17、(1);(2),;(3)【解析】试题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BHAD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=21,BH=21,可判断ABH为等腰直角三角形,所以BAH=45°,得到DAC=BACBAH=30°,根据特殊角的三角函数值得tanDAC=;由于ADy轴,则OD=1,AD=2,然后在RtOAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,1),于是可根据待定系数法求出直线AC的解析式为y=x1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0t2),由于直线lx轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t, t1),则MN=t+1,根据三角形面积公式得到SCMN=t(t+1),再进行配方得到S=(t)2+(0t2),最后根据二次函数的最值问题求解试题解析:(1)把A(2,1)代入y=,得k=2×1=2;(2)作BHAD于H,如图1,把B(1,a)代入反比例函数解析式y=,得a=2,B点坐标为(1,2),AH=21,BH=21,ABH为等腰直角三角形,BAH=45°,BAC=75°,DAC=BACBAH=30°,tanDAC=tan30°=;ADy轴,OD=1,AD=2,tanDAC=,CD=2,OC=1,C点坐标为(0,1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,1)代入得 ,解得 ,直线AC的解析式为y=x1;(3)设M点坐标为(t,)(0t2),直线lx轴,与AC相交于点N,N点的横坐标为t,N点坐标为(t, t1),MN=(t1)=t+1,SCMN=t(t+1)=t2+t+=(t)2+(0t2),a=0,当t=时,S有最大值,最大值为18、(1)0.3 ,45;(2)108°;(3)【解析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=0.3,b=100×0.45=45(人)故答案为0.3,45;(2)360°×0.3=108°答:扇形统计图中B组对应扇形的圆心角为108°(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,甲、乙两名同学都被选中的概率为=【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小19、(1)125°;(2)125°;(3)BOC=90°+n°【解析】如图,由BO、CO是角平分线得ABC=21,ACB=22,再利用三角形内角和得到ABC+ACB+A=180°,则21+22+A=180°,接着再根据三角形内角和得到1+2+BOC=180°,利用等式的性质进行变换可得BOC=90°+A,然后根据此结论分别解决(1)、(2)、(3)【详解】如图,BO、CO是角平分线,ABC=21,ACB=22,ABC+ACB+A=180°,21+22+A=180°,1+2+BOC=180°,21+22+2BOC=360°,2BOCA=180°,BOC=90°+A,(1)ABC=50°,ACB=60°,A=180°50°60°=70°,BOC=90°+×70°=125°;(2)BOC=90°+A=125°;(3)BOC=90°+n°【点睛】本题考查了三角形内角和定理:三角形内角和是180°主要用在求三角形中角的度数:直接根据两已知角求第三个角;依据三角形中角的关系,用代数方法求三个角;在直角三角形中,已知一锐角可利用两锐角互余求另一锐角20、1.【解析】直接利用绝对值的性质以及特殊角的三角函数值分别化简得出答案【详解】3tan31°+|2|(3)1(1)2118=3×+211=+211=1【点睛】本题考查了绝对值的性质以及特殊角的三角函数值,解题的关键是熟练的掌握绝对值的性质以及特殊角的三角函数值.21、详见解析【解析】利用 证明 即可解决问题【详解】证明:是线段的中点在和中,【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型22、(1)4,1;(2)见解析;(3)1.1或3.2【解析】(1)当x=2时,PMAB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1(2)利用描点法画出函数图象即可;(3)根据直角三角形31度角的性质,求出y=2,观察图象写出对应的x的值即可;【详解】(1)当x2时,PMAB,此时Q与M重合,BQBM4,当x4时,点P与B重合,此时BQ1故答案为4,1(2)函数图象如图所示:(3)如图,在RtBQM中,Q91°,MBQ61°,BMQ31°,BQBM2,观察图象可知y2时,对应的x的值为1.1或3.2故答案为1.1或3.2【点睛】本题考查圆的综合题,垂径定理,直角三角形的性质,解题的关键是灵活运用所解题的关键是理解题意,学会用测量法、图象法解决实际问题.23、 (104)米【解析】延长OC,AB交于点P,PCBPAO,根据相似三角形对应边比例相等的性质即可解题【详解】解:如图,延长OC,AB交于点PABC=120°,PBC=60°,OCB=A=90°,P=30°,AD=20米,OA=AD=10米,BC=2米,在RtCPB中,PC=BCtan60°=米,PB=2BC=4米,P=P,PCB=A=90°,PCBPAO,PA=米,AB=PAPB=()米答:路灯的灯柱AB高应该设计为()米24、证明过程见解析【解析】由BAE=BCE=ACD=90°,可求得DCE=ACB,且B+CEA=CEA+DEC=180°,可求得DEC=ABC,再结合条件可证明ABCDEC【详解】BAE=BCE=ACD=90°,5+4=4+3,5=3,且B+CEA=180°,又7+CEA=180°,B=7,在ABC和DEC中 ,ABCDEC(ASA)