2022-2023学年福建省福州福清市重点名校中考数学模拟试题含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列图形中,不是中心对称图形的是()A平行四边形B圆C等边三角形D正六边形2如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB100米,BC200米为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A点AB点BCA,B之间DB,C之间3在中,则的值是( )ABCD4A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()ABC +49D5一次函数y=2x+1的图像不经过 ( )A第一象限 B第二象限 C第三象限 D第四象限6已知关于x的二次函数yx22x2,当axa+2时,函数有最大值1,则a的值为()A1或1B1或3C1或3D3或372018的相反数是( )AB2018C-2018D8已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若ABP组成的三角形恰为等腰直角三角形,则b24ac的值为()A1B4C8D129等式成立的x的取值范围在数轴上可表示为( )ABCD10如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是()ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,二次函数y=a(x2)2+k(a0)的图象过原点,与x轴正半轴交于点A,矩形OABC的顶点C的坐标为(0,2),点P为x轴上任意一点,连结PB、PC则PBC的面积为_12某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为_元13股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_14两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PCx轴于点C,交的图象于点A,PDy轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:ODB与OCA的面积相等;四边形PAOB的面积不会发生变化;PA与PB始终相等;当点A是PC的中点时,点B一定是PD的中点其中一定正确的是_ 15已知|x|=3,y2=16,xy0,则xy=_16的绝对值是_17分解因式:_三、解答题(共7小题,满分69分)18(10分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和请你用画树状图或列表的方法,求出这两数和为6的概率如果和为奇数,则小明胜;若和为偶数,则小亮胜你认为这个游戏规则对双方公平吗?做出判断,并说明理由19(5分)如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度(精确到0.1米)(参考数据:sin10°0.17, cos10°0.98, tan10°0.18, 1.41, 1.73)20(8分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成求该工程队原计划每周修建多少米?21(10分)在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG()如图,求OD的长及的值;()如图,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BEFG,记旋转角为(0°360°),连接AG在旋转过程中,当BAG=90°时,求的大小;在旋转过程中,求AF的长取最大值时,点F的坐标及此时的大小(直接写出结果即可)22(10分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC求证:1=2;连结BE、DE,判断四边形BCDE的形状,并说明理由.23(12分)如图所示,在ABCD中,E是CD延长线上的一点,BE与AD交于点F,DECD.(1)求证:ABFCEB;(2)若DEF的面积为2,求ABCD的面积24(14分)先化简,再求值:(m+2),其中m=参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.2、A【解析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理【详解】解:以点A为停靠点,则所有人的路程的和15×100+10×3001(米),以点B为停靠点,则所有人的路程的和30×100+10×2005000(米),以点C为停靠点,则所有人的路程的和30×300+15×20012000(米),当在AB之间停靠时,设停靠点到A的距离是m,则(0m100),则所有人的路程的和是:30m+15(100m)+10(300m)1+5m1,当在BC之间停靠时,设停靠点到B的距离为n,则(0n200),则总路程为30(100+n)+15n+10(200n)5000+35n1该停靠点的位置应设在点A;故选A【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短3、D【解析】首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解【详解】C=90°,BC=1,AB=4,故选:D【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比4、A【解析】根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.【详解】轮船在静水中的速度为x千米/时,顺流航行时间为:,逆流航行时间为:,可得出方程:,故选:A【点睛】本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键5、D【解析】根据一次函数的系数判断出函数图象所经过的象限,由k=20,b=10可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】k=20,b=10,根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.6、A【解析】分析:详解:当axa2时,函数有最大值1,1x22x2,解得: ,即-1x3, a=-1或a+2=-1, a=-1或1,故选A.点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x在整个取值范围内,函数值y才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.7、C【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018,故选C.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.8、B【解析】设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c=0的两根得到x1+x2=-,x1x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到|=,然后进行化简可得到b2-1ac的值【详解】设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),则x1、x2为方程ax2+bx+c=0的两根,x1+x2=-,x1x2=,AB=|x1-x2|=,ABP组成的三角形恰为等腰直角三角形,|=,=,b2-1ac=1故选B【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质和等腰直角三角形的性质9、B【解析】根据二次根式有意义的条件即可求出的范围【详解】由题意可知: ,解得:,故选:【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.10、D【解析】试题分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.二、填空题(共7小题,每小题3分,满分21分)11、4【解析】根据二次函数的对称性求出点A的坐标,从而得出BC的长度,根据点C的坐标得出三角形的高线,从而得出答案【详解】二次函数的对称轴为直线x=2, 点A的坐标为(4,0),点C的坐标为(0,2),点B的坐标为(4,2), BC=4,则【点睛】本题主要考查的是二次函数的对称性,属于基础题型理解二次函数的轴对称性是解决这个问题的关键12、17【解析】根据饼状图求出25元所占比重为20%,再根据加权平均数求法即可解题.【详解】解:1-30%-50%=20%,.【点睛】本题考查了加权平均数的计算方法,属于简单题,计算25元所占权比是解题关键.13、.【解析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可【详解】设这两天此股票股价的平均增长率为x,由题意得(110%)(1+x)21故答案为:(110%)(1+x)21【点睛】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为14、【解析】ODB与OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB当点A是PC的中点时,点B一定是PD的中点正确,当点A是PC的中点时,k=2,则此时点B也一定是PD的中点故一定正确的是15、±3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想详解:因为|x|=1,所以x=±1因为y2=16,所以y=±2又因为xy0,所以x、y异号,当x=1时,y=-2,所以x-y=3;当x=-1时,y=2,所以x-y=-3故答案为:±3.点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论16、 【解析】绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离.【详解】的绝对值是|=【点睛】本题考查的是绝对值,熟练掌握绝对值的定义是解题的关键.17、3(m-1)2【解析】试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.故答案为:3(m-1)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).三、解答题(共7小题,满分69分)18、 (1)列表见解析;(2)这个游戏规则对双方不公平【解析】(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性【详解】(1)列表如下:由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率;(2)这个游戏规则对双方不公平理由如下:因为P(和为奇数),P(和为偶数),而,所以这个游戏规则对双方是不公平的【点睛】本题考查了列表法求概率注意树状图与列表法可以不重不漏的表示出所有等可能的情况用到的知识点为:概率=所求情况数与总情况数之比19、30.3米【解析】试题分析:过点D作DEAB于点E,在RtADE中,求出AE的长,在RtDEB中,求出BE的长即可得.试题解析:过点D作DEAB于点E,在RtADE中,AED=90°,tan1=, 1=30°,AE=DE× tan1=40×tan30°=40×40×1.73×23.1 在RtDEB中,DEB=90°,tan2=, 2=10°,BE=DE× tan2=40×tan10°40×0.18=7.2 AB=AE+BE23.1+7.2=30.3米20、该工程队原计划每周修建5米【解析】找出等量关系是工作时间工作总量÷工作效率,可根据实际施工用的时间+1周原计划用的时间,来列方程求解【详解】设该工程队原计划每周修建x米由题意得:+1整理得:x2+x322解得:x15,x26(不合题意舍去)经检验:x5是原方程的解答:该工程队原计划每周修建5米【点睛】本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键本题用到的等量关系为:工作时间工作总量÷工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解21、()()=30°或150°时,BAG=90°当=315°时,A、B、F在一条直线上时,AF的长最大,最大值为+2,此时=315°,F(+,)【解析】(1)根据正方形的性质以及勾股定理即可解决问题,(2)因为BAG=90°,BG=2AB,可知sinAGB=,推出AGB=30°,推出旋转角=30°,据对称性可知,当ABG=60°时,BAG=90°,也满足条件,此时旋转角=150°,当=315°时,A、B、F在一条直线上时,AF的长最大.【详解】()如图1中,A(0,1),OA=1,四边形OADC是正方形,OAD=90°,AD=OA=1,OD=AC=,AB=BC=BD=BO=,BD=DG,BG=,=()如图2中,BAG=90°,BG=2AB,sinAGB=,AGB=30°,ABG=60°,DBG=30°,旋转角=30°,根据对称性可知,当ABG=60°时,BAG=90°,也满足条件,此时旋转角=150°,综上所述,旋转角=30°或150°时,BAG=90°如图3中,连接OF,四边形BEFG是正方形的边长为BF=2,当=315°时,A、B、F在一条直线上时,AF的长最大,最大值为+2,此时=315°,F(+,)【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用22、(1)证明见解析;(2)四边形BCDE是菱形,理由见解析.【解析】(1)证明ADCABC后利用全等三角形的对应角相等证得结论.(2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可【详解】解:(1)证明:在ADC和ABC中,ADCABC(SSS).1=2.(2)四边形BCDE是菱形,理由如下:如答图,1=2,DC=BC,AC垂直平分BD.OE=OC,四边形DEBC是平行四边形.ACBD,四边形DEBC是菱形【点睛】考点:1.全等三角形的判定和性质;2. 线段垂直平分线的性质;3.菱形的判定23、(1)见解析;(2)16【解析】试题分析:(1)要证ABFCEB,需找出两组对应角相等;已知了平行四边形的对角相等,再利用ABCD,可得一对内错角相等,则可证(2)由于DEFEBC,可根据两三角形的相似比,求出EBC的面积,也就求出了四边形BCDF的面积同理可根据DEFAFB,求出AFB的面积由此可求出ABCD的面积试题解析:(1)证明:四边形ABCD是平行四边形A=C,ABCDABF=CEBABFCEB(2)解:四边形ABCD是平行四边形ADBC,AB平行且等于CDDEFCEB,DEFABFDE=CD,SDEF=2SCEB=18,SABF=8,S四边形BCDF=SBCE-SDEF=16S四边形ABCD=S四边形BCDF+SABF=16+8=1考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质24、-2(m+3),-1【解析】此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算【详解】解:(m+2-),=,=-,=-2(m+3)把m=-代入,得,原式=-2×(-+3)=-1