2022-2023学年湖南省涟源市重点达标名校中考数学全真模拟试题含解析.doc
-
资源ID:87799420
资源大小:958.50KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年湖南省涟源市重点达标名校中考数学全真模拟试题含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为( )ABCD2已知抛物线的图像与轴交于、两点(点在点的右侧),与轴交于点.给出下列结论:当的条件下,无论取何值,点是一个定点;当的条件下,无论取何值,抛物线的对称轴一定位于轴的左侧;的最小值不大于;若,则.其中正确的结论有( )个.A1个B2个C3个D4个3一次函数与二次函数在同一平面直角坐标系中的图像可能是( )ABCD4如图,AB是O的直径,C,D是O上位于AB异侧的两点下列四个角中,一定与ACD互余的角是()AADCBABDCBACDBAD5如图,已知RtABC中,BAC=90°,将ABC绕点A顺时针旋转,使点D落在射线CA上,DE的延长线交BC于F,则CFD的度数为()A80°B90°C100°D120°6若关于x的一元二次方程x22x+m0没有实数根,则实数m的取值是( )Am1Bm1Cm1Dm17将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )ABCD8点A(1,),B(2,)在反比例函数的图象上,则,的大小关系是( )AB=CD不能确定9BAC放在正方形网格纸的位置如图,则tanBAC的值为()ABCD10如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( )A7海里/时B7海里/时C7海里/时D28海里/时二、填空题(共7小题,每小题3分,满分21分)11如图,与是以点为位似中心的位似图形,相似比为,若点的坐标是,则点的坐标是_12因式分解:_13因式分解:2m28n2= 14菱形的两条对角线长分别是方程的两实根,则菱形的面积为_15如图,等边ABC的边长为6,ABC,ACB的角平分线交于点D,过点D作EFBC,交AB、CD于点E、F,则EF的长度为_16小红沿坡比为1:的斜坡上走了100米,则她实际上升了_米17如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得1=25°,则2的度数是_三、解答题(共7小题,满分69分)18(10分)已知A、B、C三地在同一条路上,A地在B地的正南方3千米处,甲、乙两人分别从A、B两地向正北方向的目的地C匀速直行,他们分别和A地的距离s(千米)与所用的时间t(小时)的函数关系如图所示(1)图中的线段l1是 (填“甲”或“乙”)的函数图象,C地在B地的正北方向 千米处;(2)谁先到达C地?并求出甲乙两人到达C地的时间差;(3)如果速度慢的人在两人相遇后立刻提速,并且比先到者晚1小时到达C地,求他提速后的速度.19(5分)在矩形ABCD中,AB6,AD8,点E是边AD上一点,EMEC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项如图1,求证:ANEDCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长20(8分)如图,已知一次函数y1=kx+b(k0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点且点A的横坐标和点B的纵坐标都是1求一次函数的解析式;求AOB的面积;观察图象,直接写出y1y1时x的取值范围21(10分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事件;从中任意抽取1个球恰好是红球的概率是 ;学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙你认为这个规则公平吗?请用列表法或画树状图法加以说明22(10分)某班为确定参加学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图(1)根据图中所给信息填写下表: 投中个数统计 平均数 中位数 众数 A 8 B7 7(2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明23(12分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字请你用画树状图的方法,求下列事件的概率:两次取出小球上的数字相同;两次取出小球上的数字之和大于124(14分)如图,一次函数yx+6的图象分别交y轴、x轴交于点A、B,点P从点B出发,沿射线BA以每秒1个单位的速度出发,设点P的运动时间为t秒(1)点P在运动过程中,若某一时刻,OPA的面积为6,求此时P的坐标;(2)在整个运动过程中,当t为何值时,AOP为等腰三角形?(只需写出t的值,无需解答过程)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题解析:一个斜坡长130m,坡顶离水平地面的距离为50m,这个斜坡的水平距离为:=10m,这个斜坡的坡度为:50:10=5:1故选A点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式2、C【解析】利用抛物线两点式方程进行判断;根据根的判别式来确定a的取值范围,然后根据对称轴方程进行计算;利用顶点坐标公式进行解答;利用两点间的距离公式进行解答【详解】y=ax1+(1-a)x-1=(x-1)(ax+1)则该抛物线恒过点A(1,0)故正确;y=ax1+(1-a)x-1(a0)的图象与x轴有1个交点,=(1-a)1+8a=(a+1)10,a-1该抛物线的对称轴为:x=,无法判定的正负故不一定正确;根据抛物线与y轴交于(0,-1)可知,y的最小值不大于-1,故正确;A(1,0),B(-,0),C(0,-1),当AB=AC时,解得:a=,故正确综上所述,正确的结论有3个故选C【点睛】考查了二次函数与x轴的交点及其性质(1).抛物线是轴对称图形对称轴为直线x = - ,对称轴与抛物线唯一的交点为抛物线的顶点P;特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0);(1).抛物线有一个顶点P,坐标为P ( -b/1a ,(4ac-b1)/4a ),当-=0,即b=0时,P在y轴上;当= b1-4ac=0时,P在x轴上;(3).二次项系数a决定抛物线的开口方向和大小;当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;|a|越大,则抛物线的开口越小(4).一次项系数b和二次项系数a共同决定对称轴的位置;当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;(5).常数项c决定抛物线与y轴交点;抛物线与y轴交于(0,c);(6).抛物线与x轴交点个数= b1-4ac>0时,抛物线与x轴有1个交点;= b1-4ac=0时,抛物线与x轴有1个交点;= b1-4ac<0时,抛物线与x轴没有交点X的取值是虚数(x= -b±b14ac 乘上虚数i,整个式子除以1a);当a>0时,函数在x= -b/1a处取得最小值f(-b/1a)=4ac-b1/4a;在x|x<-b/1a上是减函数,在x|x>-b/1a上是增函数;抛物线的开口向上;函数的值域是y|y4ac-b1/4a相反不变;当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax1+c(a0).3、D【解析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a0,由直线可知,a0,a的取值矛盾,故本选项错误;C、由抛物线可知,a0,由直线可知,a0,a的取值矛盾,故本选项错误;D、由抛物线可知,a0,由直线可知,a0,且抛物线与直线与y轴的交点相同,故本选项正确故选D【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法4、D【解析】ACD对的弧是,对的另一个圆周角是ABD,ABD=ACD(同圆中,同弧所对的圆周角相等),又AB为直径,ADB=90°,ABD+BAD=90°,即ACD+BAD=90°,与ACD互余的角是BAD.故选D.5、B【解析】根据旋转的性质得出全等,推出B=D,求出B+BEF=D+AED=90°,根据三角形外角性质得出CFD=B+BEF,代入求出即可【详解】解:将ABC绕点A顺时针旋转得到ADE,ABCADE,B=D,CAB=BAD=90°,BEF=AED,B+BEF+BFE=180°,D+BAD+AED=180°,B+BEF=D+AED=180°90°=90°,CFD=B+BEF=90°,故选:B【点睛】本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键6、C【解析】试题解析:关于的一元二次方程没有实数根,解得:故选C7、C【解析】试题分析:抛物线向右平移1个单位长度,平移后解析式为:,再向上平移1个单位长度所得的抛物线解析式为:故选C考点:二次函数图象与几何变换8、C【解析】试题分析:对于反比例函数y=,当k0时,在每一个象限内,y随x的增大而减小,根据题意可得:12,则考点:反比例函数的性质9、D【解析】连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明ADC=90°,再利用三角函数定义可得答案【详解】连接CD,如图:,CD=,AC=,ADC=90°,tanBAC=故选D【点睛】本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明ADC=90°10、A【解析】试题解析:设货船的航行速度为海里/时,小时后货船在点处,作于点.由题意海里,海里,在中, 所以在中, 所以所以解得:故选A.二、填空题(共7小题,每小题3分,满分21分)11、(2,2) 【解析】分析:首先解直角三角形得出A点坐标,再利用位似是特殊的相似,若两个图形与是以点为位似中心的位似图形,相似比是k,上一点的坐标是 则在中,它的对应点的坐标是或,进而求出即可详解:与是以点为位似中心的位似图形, ,若点的坐标是, 过点作交于点E. 点的坐标为:与的相似比为,点的坐标为:即点的坐标为:故答案为:点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.12、【解析】提公因式法和应用公式法因式分解【详解】解: 故答案为:【点睛】本题考查因式分解,要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式13、2(m+2n)(m2n)【解析】试题分析:根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解解:2m28n2,=2(m24n2),=2(m+2n)(m2n)考点:提公因式法与公式法的综合运用14、2【解析】解:x214x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1所以菱形的面积为:(6×1)÷2=2菱形的面积为:2故答案为2点睛:本题考查菱形的性质菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系15、4【解析】试题分析:根据BD和CD分别平分ABC和ACB,和EFBC,利用两直线平行,内错角相等和等量代换,求证出BE=DE,DF=FC然后即可得出答案解:在ABC中,BD和CD分别平分ABC和ACB,EBD=DBC,FCD=DCB,EFBC,EBD=DBC=EDB,FCD=DCB=FDC,BE=DE,DF=EC,EF=DE+DF,EF=EB+CF=2BE,等边ABC的边长为6,EFBC,ADE是等边三角形,EF=AE=2BE,EF=,故答案为4考点:等边三角形的判定与性质;平行线的性质16、50【解析】根据题意设铅直距离为x,则水平距离为,根据勾股定理求出x的值,即可得到结果【详解】解:设铅直距离为x,则水平距离为,根据题意得:,解得:(负值舍去),则她实际上升了50米,故答案为:50【点睛】本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.17、35°【解析】分析:先根据两直线平行,内错角相等求出3,再根据直角三角形的性质用2=60°-3代入数据进行计算即可得解详解:直尺的两边互相平行,1=25°,3=1=25°,2=60°-3=60°-25°=35°故答案为35°点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键三、解答题(共7小题,满分69分)18、(1)乙;3;(2)甲先到达,到达目的地的时间差为小时;(3)速度慢的人提速后的速度为千米/小时.【解析】分析:(1)根据题意结合所给函数图象进行判断即可;(2)由所给函数图象中的信息先求出二人所对应的函数解析式,再由解析式结合图中信息求出二人到达C地的时间并进行比较、判断即可得到本问答案;(3)根据图象中的信息结合(2)中的结论进行解答即可.详解:(1)由题意结合图象中的信息可知:图中线段l1是乙的图象;C地在B地的正北方6-3=3(千米)处.(2)甲先到达. 设甲的函数解析式为s=kt,则有4=t,s=4t.当s=6时,t=.设乙的函数解析式为s=nt+3,则有4=n+3,即n=1.乙的函数解析式为s=t+3.当s=6时,t=3. 甲、乙到达目的地的时间差为:(小时). (3)设提速后乙的速度为v千米/小时,相遇处距离A地4千米,而C地距A地6千米,相遇后需行2千米. 又原来相遇后乙行2小时才到达C地,乙提速后2千米应用时1.5小时. 即,解得: ,答:速度慢的人提速后的速度为千米/小时.点睛:本题考查的是由函数图象中获取相关信息来解决问题的能力,解题的关键是结合题意弄清以下两点:(1)函数图象上点的横坐标和纵坐标各自所表示是实际意义;(2)图象中各关键点(起点、终点、交点和转折点)的实际意义.19、(1)见解析;(2);(1)DE的长分别为或1【解析】(1)由比例中项知,据此可证AMEAEN得AEMANE,再证AEMDCE可得答案;(2)先证ANEEAC,结合ANEDCE得DCEEAC,从而知,据此求得AE8,由(1)得AEMDCE,据此知,求得AM,由求得MN;(1)分ENMEAC和ENMECA两种情况分别求解可得【详解】解:(1)AE是AM和AN的比例中项,AA,AMEAEN, AEMANE,D90°,DCEDEC90°,EMBC,AEMDEC90°,AEMDCE,ANEDCE;(2)AC与NE互相垂直,EACAEN90°,BAC90°,ANEAEN90°,ANEEAC,由(1)得ANEDCE,DCEEAC,tanDCEtanDAC,DCAB6,AD8,DE,AE8,由(1)得AEMDCE,tanAEMtanDCE,AM,AN,MN;(1)NMEMAEAEM,AECDDCE,又MAED90°,由(1)得AEMDCE,AECNME,当AEC与以点E、M、N为顶点所组成的三角形相似时ENMEAC,如图2, ANEEAC,由(2)得:DE;ENMECA,如图1,过点E作EHAC,垂足为点H,由(1)得ANEDCE,ECADCE,HEDE,又tanHAE,设DE1x,则HE1x,AH4x,AE5x,又AEDEAD,5x1x8,解得x1,DE1x1,综上所述,DE的长分别为或1【点睛】本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点20、(1)y1=x+1,(1)6;(3)x1或0x4【解析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(1)将两条坐标轴作为AOB的分割线,求得AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可试题解析:(1)设点A坐标为(1,m),点B坐标为(n,1)一次函数y1=kx+b(k0)的图象与反比例函数y1=的图象交于A、B两点将A(1,m)B(n,1)代入反比例函数y1=可得,m=4,n=4将A(1,4)、B(4,1)代入一次函数y1=kx+b,可得,解得一次函数的解析式为y1=x+1;,(1)在一次函数y1=x+1中,当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)=×1×1+×1×1+×1×1=1+1+1=6;(3)根据图象可得,当y1y1时,x的取值范围为:x1或0x4考点:1、一次函数,1、反比例函数,3、三角形的面积21、(1)必然,不可能;(2);(3)此游戏不公平【解析】(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;(2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案【详解】(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;故答案为必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:;故答案为;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:;则选择乙的概率为:,故此游戏不公平【点睛】此题主要考查了游戏公平性,正确列出树状图是解题关键22、(1)7,9,7;(2)应该选派B;【解析】(1)分别利用平均数、中位数、众数分析得出答案;(2)利用方差的意义分析得出答案【详解】(1)A成绩的平均数为(9+10+4+3+9+7)=7;众数为9;B成绩排序后为6,7,7,7,7,8,故中位数为7;故答案为:7,9,7;(2)= (79)2+(710)2+(74)2+(73)2+(79)2+(77)2=7;= (77)2+(77)2+(78)2+(77)2+(76)2+(77)2= ;从方差看,B的方差小,所以B的成绩更稳定,从投篮稳定性考虑应该选派B【点睛】此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好23、(1);(2)【解析】根据列表法或树状图看出所有可能出现的结果共有多少种,再求出两次取出小球上的数字相同的结果有多少种,根据概率公式求出该事件的概率【详解】第二次第一次6276(6,6)(6,2)(6,7)2(2,6)(2,2)(2,7)7(7,6)(7,2)(7,7)(1)P(两数相同)=(2)P(两数和大于1)=【点睛】本题考查了利用列表法、画树状图法求等可能事件的概率24、(1)(2,4.5),(-2,7.5);(2)2.8,4,5,16【解析】(1)先求出OPA的面积为6时BP的长,再求出点P的坐标;(2)分别讨论AO=AP,AP=OP和AO=OP三种情况.【详解】(1)在y=-x+6中,令x=0,得y=6,令y=0,得x=8,A(0,6),B(8,0),OA=6,OB=8,AB=10,AB边上的高为6×8÷10=,P点的运动时间为t,BP=t,则AP=,当AOP面积为6时,则有AP×=6,即×=6,解得t=7.5或12.5,过P作PEx轴,PFy轴,垂足分别为E、F,则PE=4.5或7.5,BE=6或10,则点P坐标为(8-6,4.5)或(8-10,7.5),即(2,4.5)或(-2,7.5);(2)由题意可知BP=t,AP=,当AOP为等腰三角形时,有AP=AO、AP=OP和AO=OP三种情况当AP=AO时,则有=6,解得t=4或16;当AP=OP时,过P作PMAO,垂足为M,如图1,则M为AO中点,故P为AB中点,此时t=5;当AO=OP时,过O作ONAB,垂足为N,过P作PHOB,垂足为H,如图2,则AN=AP=(10-t),PHAO,AOBPHB,=,即=,PH=t,又OAN+AON=OAN+PBH=90°,AON=PBH,又ANO=PHB,ANOPHB,=,即=,解得t=;综上可知当t的值为、4、5和16时,AOP为等腰三角形