2022-2023学年江苏省扬州市江都区第三中学中考联考数学试题含解析.doc
-
资源ID:87799490
资源大小:823KB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年江苏省扬州市江都区第三中学中考联考数学试题含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为( )A10=B+10=C10=D+10=2估计的运算结果应在哪个两个连续自然数之间()A2和1B3和2C4和3D5和43把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转()A36°B45°C72°D90°4|的倒数是( )A2BCD25下列各图中,既可经过平移,又可经过旋转,由图形得到图形的是()ABCD6下列运算正确的是()A(2a)3=6a3B3a24a3=12a5C3a(2a)=6a3a2D2a3a2=2a7如图,直线ab,点A在直线b上,BAC=100°,BAC的两边与直线a分别交于B、C两点,若2=32°,则1的大小为()A32°B42°C46°D48°8对于不等式组,下列说法正确的是()A此不等式组的正整数解为1,2,3B此不等式组的解集为C此不等式组有5个整数解D此不等式组无解9如图,AB是O的直径,弦CDAB,垂足为E,连接AC,若CAB=22.5°,CD=8cm,则O的半径为()A8cmB4cmC4cmD5cm10大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉( )A6.5千克 B7.5千克 C8.5千克 D9.5千克11某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()ABCD12关于x的不等式的解集为x3,那么a的取值范围为()Aa3Ba3Ca3Da3二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(),D是AB边上的一点将ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么k的值是_14如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_15如图,已知ABC和ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB4,则OE的最小值为_16在一个不透明的口袋中,有3个红球、2个黄球、一个白球,它们除颜色不同之外其它完全相同,现从口袋中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次摸到一个红球和一个黄球的概率是_17在实数2、0、1、2、中,最小的是_18将一张长方形纸片折叠成如图所示的形状,若DBC=56°,则1=_°三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)计算:(1)42tan60°+ 20(6分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:本次调查人数共 人,使用过共享单车的有 人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在24千米的有多少人?21(6分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:上表中众数m的值为 ;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励如果想让一半左右的工人能获奖,应根据 来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手若该部门有300名工人,试估计该部门生产能手的人数22(8分)问题提出(1)如图1,在ABC中,A75°,C60°,AC6,求ABC的外接圆半径R的值;问题探究(2)如图2,在ABC中,BAC60°,C45°,AC8,点D为边BC上的动点,连接AD以AD为直径作O交边AB、AC分别于点E、F,接E、F,求EF的最小值;问题解决(3)如图3,在四边形ABCD中,BAD90°,BCD30°,ABAD,BC+CD12,连接AC,线段AC的长是否存在最小值,若存在,求最小值:若不存在,请说明理由23(8分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,m8),B(n,6)两点求一次函数与反比例函数的解析式;求AOB的面积24(10分)如图,二次函数的图像与轴交于、两点,与轴交于点,点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点求、的值;如图,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由25(10分)已知:如图1在RtABC中,C=90°,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0t5),解答下列问题:(1)当为t何值时,PQBC;(2)设AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;(3)如图2,连接PC,并把PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQP'C为菱形?若存在,求出此时t的值;若不存在,请说明理由26(12分)已知关于x的一元二次方程为常数求证:不论m为何值,该方程总有两个不相等的实数根;若该方程一个根为5,求m的值27(12分)(10分)如图,AB是O的直径,OD弦BC于点F,交O于点E,连结CE、AE、CD,若AEC=ODC(1)求证:直线CD为O的切线;(2)若AB=5,BC=4,求线段CD的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可【详解】解:设第一批购进x件衬衫,则所列方程为:+10=故选B【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键2、C【解析】根据二次根式的性质,可化简得=3=2,然后根据二次根式的估算,由324可知2在4和3之间故选C点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.3、C【解析】分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72° 故选C点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角4、D【解析】根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案【详解】|=,的倒数是2;|的倒数是2,故选D【点睛】本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键5、D【解析】A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.6、B【解析】先根据同底数幂的乘法法则进行运算即可。【详解】A.;故本选项错误;B. 3a24a3=12a5; 故本选项正确;C.;故本选项错误;D. 不是同类项不能合并; 故本选项错误;故选B.【点睛】先根据同底数幂的乘法法则, 幂的乘方, 积的乘方, 合并同类项分别求出每个式子的值, 再判断即可.7、D【解析】根据平行线的性质与对顶角的性质求解即可.【详解】ab,BCA=2,BAC=100°,2=32°CBA=180°-BAC-BCA=180°-100°-32°=48°.1=CBA=48°.故答案选D.【点睛】本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.8、A【解析】解:,解得x,解得x1,所以不等式组的解集为1x,所以不等式组的整数解为1,2,1故选A点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解)解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解9、C【解析】连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径【详解】解:连接OC,如图所示:AB是O的直径,弦CDAB, OA=OC,A=OCA=22.5°,COE为AOC的外角,COE=45°,COE为等腰直角三角形, 故选:C【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键10、C【解析】【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可【详解】设每个小箱子装洗衣粉x千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.11、B【解析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:故选B【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程12、D【解析】分析:先解第一个不等式得到x3,由于不等式组的解集为x3,则利用同大取大可得到a的范围详解:解不等式2(x-1)4,得:x3,解不等式a-x0,得:xa,不等式组的解集为x3,a3,故选D点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到二、填空题:(本大题共6个小题,每小题4分,共24分)13、-12【解析】过E点作EFOC于F,如图所示:由条件可知:OE=OA=5,所以EF=3,OF=4,则E点坐标为(-4,3)设反比例函数的解析式是y,则有k=-4×3=-12.故答案是:-12.14、 【解析】设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,A=D=90°由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x在RtABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在RtDEF根据勾股定理列出关于x的方程即可解决问题【详解】设CE=x四边形ABCD是矩形,AD=BC=5,CD=AB=3,A=D=90°将BCE沿BE折叠,使点C恰好落在AD边上的点F处,BF=BC=5,EF=CE=x,DE=CD-CE=3-x在RtABF中,由勾股定理得:AF2=52-32=16,AF=4,DF=5-4=1在RtDEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=,故答案为15、1【解析】根据等边三角形的性质可得OCAC,ABD30°,根据“SAS”可证ABDACE,可得ACE30°ABD,当OEEC时,OE的长度最小,根据直角三角形的性质可求OE的最小值【详解】解:ABC的等边三角形,点O是AC的中点,OCAC,ABD30°ABC和ADE均为等边三角形,ABAC,ADAE,BACDAE60°,BADCAE,且ABAC,ADAE,ABDACE(SAS)ACE30°ABD当OEEC时,OE的长度最小,OEC90°,ACE30°OE最小值OCAB1,故答案为1【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键16、 【解析】先画树状图展示所有36种等可能的结果数,再找出两次摸到一个红球和一个黄球的结果数,然后根据概率公式求解【详解】画树状图如下:由树状图可知,共有36种等可能结果,其中两次摸到一个红球和一个黄球的结果数为12,所以两次摸到一个红球和一个黄球的概率为,故答案为.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率17、1【解析】解:在实数1、0、1、1、中,最小的是1,故答案为1【点睛】本题考查实数大小比较18、62【解析】根据折叠的性质得出2=ABD,利用平角的定义解答即可【详解】解:如图所示:由折叠可得:2=ABD,DBC=56°,2+ABD+56°=180°,解得:2=62°,AE/BC,1=2=62°,故答案为62.【点睛】本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出2=ABD是关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、1【解析】首先利用乘方、二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案解:原式=1“点睛”此题主要考查了实数运算,正确化简各数是解题关键,20、(1)200,90 (2)图形见解析(3)750人【解析】试题分析:(1)用对于共享单车不了解的人数20除以对于共享单车不了解的人数所占得百分比即可得本次调查人数;用总人数乘以使用过共享单车人数所占的百分比即可得使用过共享单车的人数;(2)用使用过共享单车的总人数减去02,46,68的人数,即可得24的人数,再图上画出即可;(3)用3000乘以骑行路程在24千米的人数所占的百分比即可得每天的骑行路程在24千米的人数.试题解析:(1)20÷10%=200,200×(1-45%-10%)=90 ; (2)90-25-10-5=50,补全条形统计图 (3)=750(人) 答: 每天的骑行路程在24千米的大约750人21、 (1)18;(2)中位数;(3)100名.【解析】【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数【详解】(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人【点睛】本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答22、(1)ABC的外接圆的R为1;(2)EF的最小值为2;(3)存在,AC的最小值为9【解析】(1)如图1中,作ABC的外接圆,连接OA,OC证明AOC=90°即可解决问题;(2)如图2中,作AHBC于H当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短;(3)如图3中,将ADC绕点A顺时针旋转90°得到ABE,连接EC,作EHCB交CB的延长线于H,设BE=CD=x证明EC=AC,构建二次函数求出EC的最小值即可解决问题【详解】解:(1)如图1中,作ABC的外接圆,连接OA,OCB180°BACACB180°75°10°45°,又AOC2B,AOC90°,AC1,OAOC1,ABC的外接圆的R为1(2)如图2中,作AHBC于HAC8,C45°,AHACsin45°8×8,BAC10°,当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短,如图21中,当ADBC时,作OHEF于H,连接OE,OFEOF2BAC20°,OEOF,OHEF,EHHF,OEFOFE30°,EHOFcos30°41,EF2EH2,EF的最小值为2(3)如图3中,将ADC绕点A顺时针旋转90°得到ABE,连接EC,作EHCB交CB的延长线于H,设BECDxAEAC,CAE90°,ECAC,AECACE45°,EC的值最小时,AC的值最小,BCDACB+ACDACB+AEB30°,BEC+BCE10°,EBC20°,EBH10°,BEH30°,BHx,EHx,CD+BC2,CDx,BC2xEC2EH2+CH2(x)2+x22x+432,a10,当x1时,EC的长最小,此时EC18,ACEC9,AC的最小值为9【点睛】本题属于圆综合题,考查了圆周角定理,勾股定理,解直角三角形,二次函数的性质等知识,解题的关键是学会添加常用辅助线,学会构建二次函数解决最值问题,属于中考压轴题23、(1)y=-,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解试题解析:(1)将A(3,m+8)代入反比例函数y=得,=m+8,解得m=6,m+8=6+8=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x1;(2)设AB与x轴相交于点C,令2x1=0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=×2×3+×2×1,=3+1,=1考点:反比例函数与一次函数的交点问题24、(1),;(2)点的坐标为;(3)点的坐标为和【解析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.【详解】解:(1)轴,抛物线对称轴为直线点的坐标为解得或(舍去),(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.25、(1)当t=时,PQBC;(2)(t)2+,当t=时,y有最大值为;(3)存在,当t=时,四边形PQPC为菱形【解析】(1)只要证明APQABC,可得=,构建方程即可解决问题;(2)过点P作PDAC于D,则有APDABC,理由相似三角形的性质构建二次函数即可解决问题;(3)存在由APOABC,可得=,即=,推出OA=(5t),根据OC=CQ,构建方程即可解决问题;【详解】(1)在RtABC中,AB=10,BP=2t,AQ=t,则AP=102t,PQBC,APQABC,=,即=,解得t=,当t=时,PQBC(2)过点P作PDAC于D,则有APDABC,=,即=,PD=6t,y=t(6t)=(t)2+,当t=时,y有最大值为(3)存在理由:连接PP,交AC于点O四边形PQPC为菱形,OC=CQ,APOABC,=,即=,OA=(5t),8(5t)=(8t),解得t=,当t=时,四边形PQPC为菱形【点睛】本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题26、(1)详见解析;(2)的值为3或1【解析】(1)将原方程整理成一般形式,令即可求解,(2)将x=1代入,求得m的值,再重新解方程即可.【详解】证明:原方程可化为,不论m为何值,该方程总有两个不相等的实数根解:将代入原方程,得:,解得:,的值为3或1【点睛】本题考查了参数对一元二次方程根的影响.中等难度关键是将根据不同情况讨论参数的取值范围.27、(1)证明见试题解析;(2)【解析】试题分析:(1)利用圆周角定理结合等腰三角形的性质得出OCF+DCB=90°,即可得出答案;(2)利用圆周角定理得出ACB=90°,利用相似三角形的判定与性质得出DC的长试题解析:(1)连接OC,CEA=CBA,AEC=ODC,CBA=ODC,又CFD=BFO,DCB=BOF,CO=BO,OCF=B,B+BOF=90°,OCF+DCB=90°,直线CD为O的切线;(2)连接AC,AB是O的直径,ACB=90°,DCO=ACB,又D=B,OCDACB,ACB=90°,AB=5,BC=4,AC=3,即,解得;DC=考点:切线的判定