2022-2023学年江苏省苏州市吴中学区统考市级名校中考数学最后一模试卷含解析.doc
-
资源ID:87799616
资源大小:634KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年江苏省苏州市吴中学区统考市级名校中考数学最后一模试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,矩形ABCD中,AB=8,BC=1点E在边AB上,点F在边CD上,点G、H在对角线AC上若四边形EGFH是菱形,则AE的长是( )A2B3C5D62如图,点A所表示的数的绝对值是()A3B3CD3下列调查中适宜采用抽样方式的是()A了解某班每个学生家庭用电数量 B调查你所在学校数学教师的年龄状况C调查神舟飞船各零件的质量 D调查一批显像管的使用寿命4下列命题是真命题的是( )A过一点有且只有一条直线与已知直线平行B对角线相等且互相垂直的四边形是正方形C平分弦的直径垂直于弦,并且平分弦所对的弧D若三角形的三边a,b,c满足a2b2c2acbcab,则该三角形是正三角形5下列计算正确的是()A +BC×6D46计算(1)÷的结果是( )Ax1BCD7计算(18)÷9的值是( )A-9B-27C-2D28苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A(a+b)元B(3a+2b)元C(2a+3b)元D5(a+b)元9如图,是反比例函数图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内不包括边界的整数点个数是k,则抛物线向上平移k个单位后形成的图象是ABCD10如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是 ( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11因式分解:(a+1)(a1)2a+2_12已知O的半径为5,由直径AB的端点B作O的切线,从圆周上一点P引该切线的垂线PM,M为垂足,连接PA,设PA=x,则AP+2PM的函数表达式为_,此函数的最大值是_,最小值是_13某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示:应聘者专业素质创新能力外语水平应变能力A73857885B81828075如果只招一名主持人,该选用_;依据是_(答案不唯一,理由支撑选项即可)14把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地的4倍,设小圆形场地的半径为x米,若要求出未知数x,则应列出方程 (列出方程,不要求解方程)15如图,中,平分,与相交于点,则的长等于_.16化简:_三、解答题(共8题,共72分)17(8分)如图,AB是O的直径,点C在AB的延长线上,CD与O相切于点D,CEAD,交AD的延长线于点E(1)求证:BDC=A;(2)若CE=4,DE=2,求AD的长18(8分)小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝)小强根据他学习函数的经验做了如下的探究下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米则y关于x的函数表达式为_;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:x0.511.522.533.544.55y17108.38.28.79.310.811.6描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x_时,y有最小值由此,小强确定篱笆长至少为_米19(8分)(1)解不等式组:;(2)解方程:.20(8分)如图,在直角坐标系中ABC的A、B、C三点坐标A(7,1)、B(8,2)、C(9,0)(1)请在图中画出ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形ABC(要求与ABC同在P点一侧),画出ABC关于y轴对称的A'B'C';(2)写出点A'的坐标21(8分)如图,曲线BC是反比例函数y(4x6)的一部分,其中B(4,1m),C(6,m),抛物线yx2+2bx的顶点记作A(1)求k的值(2)判断点A是否可与点B重合;(3)若抛物线与BC有交点,求b的取值范围22(10分)如图,已知O经过ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD8,AC9,sinC,求O的半径23(12分)如图,已知ABC中,AB=AC=5,cosA=求底边BC的长24某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:收集数据从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:八年级7886748175768770759075798170748086698377九年级9373888172819483778380817081737882807040整理、描述数据将成绩按如下分段整理、描述这两组样本数据:成绩(x)40x4950x5960x6970x7980x8990x100八年级人数0011171九年级人数1007102(说明:成绩80分及以上为体质健康优秀,7079分为体质健康良好,6069分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如表所示:年级平均数中位数众数方差八年级78.377.57533.6九年级7880.5a52.1(1)表格中a的值为_;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由(请从两个不同的角度说明推断的合理性)参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EFAC;利用”AAS或ASA”易证FMCEMA,根据全等三角形的性质可得AM=MC;在RtABC中,由勾股定理求得AC=,且tanBAC=;在RtAME中,AM=AC=,tanBAC=可得EM=;在RtAME中,由勾股定理求得AE=2故答案选C考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数2、A【解析】根据负数的绝对值是其相反数解答即可【详解】|-3|=3,故选A【点睛】此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答3、D【解析】根据全面调查与抽样调查的特点对各选项进行判断【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查故选:D【点睛】本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度4、D【解析】根据真假命题的定义及有关性质逐项判断即可.【详解】A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、a2b2c2acbcab,2a22b22c2-2ac-2bc-2ab=0,(a-b)2+(a-c)2+(b-c)2=0,a=b=c,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.5、B【解析】根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把 化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断【详解】解:A、与不能合并,所以A选项不正确;B、-=2=,所以B选项正确;C、×=,所以C选项不正确;D、=÷=2÷=2,所以D选项不正确故选B【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算6、B【解析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得【详解】解:原式=(-)÷=,故选B【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则7、C【解析】直接利用有理数的除法运算法则计算得出答案【详解】解:(-18)÷9=-1故选:C【点睛】此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键8、C【解析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.9、A【解析】依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线向上平移5个单位后形成的图象【详解】解:如图,反比例函数图象与坐标轴围成的区域内不包括边界的整数点个数是5个,即,抛物线向上平移5个单位后可得:,即,形成的图象是A选项故选A【点睛】本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答10、B【解析】试题解析:转盘被等分成6个扇形区域,而黄色区域占其中的一个,指针指向黄色区域的概率=故选A考点:几何概率二、填空题(本大题共6个小题,每小题3分,共18分)11、(a1)1【解析】提取公因式(a1),进而分解因式得出答案【详解】解:(a+1)(a1)1a+1(a+1)(a1)1(a1)(a1)(a+11)(a1)1故答案为:(a1)1【点睛】此题主要考查了提取公因式法分解因式,找出公因式是解题关键12、x2+x+20(0x10) 不存在 【解析】先连接BP,AB是直径,BPBM,所以有,BMP=APB=90°,又PBM=BAP,那么有PMBPAB,于是PM:PB=PB:AB,可求从而有(0x10),再根据二次函数的性质,可求函数的最大值【详解】如图所示,连接PB,PBM=BAP,BMP=APB=90°,PMBPAB,PM:PB=PB:AB,(0x10), AP+2PM有最大值,没有最小值,y最大值= 故答案为(0x10),不存在【点睛】考查相似三角形的判定与性质,二次函数的最值等,综合性比较强,需要熟练掌握.13、A A的平均成绩高于B平均成绩 【解析】根据表格求出A,B的平均成绩,比较大小即可解题.【详解】解:A的平均数是80.25,B的平均数是79.5,A比B更优秀,如果只招一名主持人,该选用A;依据是A的平均成绩高于B平均成绩.【点睛】本题考查了平均数的实际应用,属于简单题,从表格中找到有用信息是解题关键.14、(x+5)1=4x1【解析】根据等量关系“大圆的面积=4×小圆的面积”可以列出方程【详解】解:设小圆的半径为x米,则大圆的半径为(x+5)米,根据题意得:(x+5)1=4x1,故答案为(x+5)1=4x1.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出15、3【解析】如图,延长CE、DE,分别交AB于G、H,由BAD=ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CGAB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.【详解】如图,延长CE、DE,分别交AB于G、H,BAD=ADE=60°,ADH是等边三角形,DH=AD=AH=5,DHA=60°,AC=BC,CE平分ACB,ACB=90°,AB=8,AG=AB=4,CGAB,GH=AH=AG=5-4=1,DHA=60°,GEH=30°,EH=2GH=2DE=DH-EH=5=2=3.故答案为:3【点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.16、3【解析】分析:根据算术平方根的概念求解即可.详解:因为32=9所以=3.故答案为3.点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.三、解答题(共8题,共72分)17、(1)证明过程见解析;(2)1.【解析】试题分析:(1)连接OD,由CD是O切线,得到ODC=90°,根据AB为O的直径,得到ADB=90°,等量代换得到BDC=ADO,根据等腰直角三角形的性质得到ADO=A,即可得到结论;(2)根据垂直的定义得到E=ADB=90°,根据平行线的性质得到DCE=BDC,根据相似三角形的性质得到,解方程即可得到结论试题解析:(1)连接OD, CD是O切线, ODC=90°, 即ODB+BDC=90°,AB为O的直径, ADB=90°, 即ODB+ADO=90°, BDC=ADO,OA=OD, ADO=A, BDC=A;(2)CEAE, E=ADB=90°, DBEC, DCE=BDC, BDC=A, A=DCE,E=E, AECCED, , EC2=DEAE, 11=2(2+AD), AD=1考点:(1)切线的性质;(2)相似三角形的判定与性质18、见解析【解析】根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x,由x()2+4可得当x=2,y有最小值,则可求篱笆长【详解】根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2xx()2+()2=()2+4,x4,2x1,当x=2时,y有最小值为1,由此小强确定篱笆长至少为1米故答案为:y=2x,2,1【点睛】本题考查了反比例函数的应用,完全平方公式的运用,关键是熟练运用完全平方公式19、(1)2x2;(2)x=【解析】(1)先求出不等式组中每个不等式的解集,再求出不等式组的解集即可;(2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可【详解】(1),解不等式得:x2,解不等式得:x2,不等式组的解集为2x2;(2)方程两边都乘以(2x1)(x2)得2x(x2)+x(2x1)=2(x2)(2x1),解得:x=,检验:把x=代入(2x1)(x2)0,所以x=是原方程的解,即原方程的解是x=【点睛】本题考查了解一元一次不等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1 )的关键,能把分式方程转化成整式方程是解(2)的关键20、(1)见解析;(2)点A'的坐标为(-3,3)【解析】解:(1),A'B'C'如图所示(2)点A'的坐标为(-3,3).21、(1)12;(2)点A不与点B重合;(3)【解析】(1)把B、C两点代入解析式,得到k4(1m)6×(m),求得m2,从而求得k的值;(2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b4,且b23,显然不成立;(3)当抛物线经过点B(4,3)时,解得,b ,抛物线右半支经过点B;当抛物线经过点C,解得,b,抛物线右半支经过点C;从而求得b的取值范围为b【详解】解:(1)B(4,1m),C(6,m)在反比例函数 的图象上,k4(1m)6×(m),解得m2,k4×1(2)12;(2)m2,B(4,3),抛物线yx2+2bx(xb)2+b2,A(b,b2)若点A与点B重合,则有b4,且b23,显然不成立,点A不与点B重合;(3)当抛物线经过点B(4,3)时,有342+2b×4,解得,b, 显然抛物线右半支经过点B;当抛物线经过点C(6,2)时,有262+2b×6,解得,b,这时仍然是抛物线右半支经过点C,b的取值范围为b【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题22、O的半径为【解析】如图,连接OA交BC于H首先证明OABC,在RtACH中,求出AH,设O的半径为r,在RtBOH中,根据BH2+OH2OB2,构建方程即可解决问题。【详解】解:如图,连接OA交BC于H点A为的中点,OABD,BHDH4,AHCBHO90°,AC9,AH3,设O的半径为r,在RtBOH中,BH2+OH2OB2,42+(r3)2r2,r,O的半径为【点睛】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题23、【解析】过点B作BDAC,在ABD中由cosA=可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.【详解】解:过点B作BDAC,垂足为点D,在RtABD中,,,AB=5,AD=AB·cosA=5×=3,BD=4,AC=5,DC=2,BC=.【点睛】本题考查了锐角的三角函数和勾股定理的运用.24、 (1)81;(2) 108人;(3)见解析.【解析】(1)根据众数的概念解答;(2)求出九年级学生体质健康的优秀率,计算即可;(3)分别从不同的角度进行评价【详解】解:(1)由测试成绩可知,81分出现的次数最多,a=81,故答案为:81;(2)九年级学生体质健康的优秀率为:,九年级体质健康优秀的学生人数为:180×60%=108(人),答:估计该校九年级体质健康优秀的学生人数为108人;(3)因为八年级学生的平均成绩高于九年级的平均成绩,且八年级学生成绩的方差小于九年级的方差,所以八年级学生的体质健康情况更好一些因为九年级学生的优秀率(60%)高于八年级的优秀率(40%),且九年级学生成绩的众数或中位数高于八年级的众数或中位数,所以九年级学生的体质健康情况更好一些【点睛】本题考查的是用样本估计总体、方差、平均数、众数和中位数的概念和性质,正确求出样本的众数、理解方差和平均数、众数、中位线的性质是解题的关键