2022-2023学年浙江省湖州市名校中考押题数学预测卷含解析.doc
-
资源ID:87799618
资源大小:697KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年浙江省湖州市名校中考押题数学预测卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,在正方形网格中建立平面直角坐标系,若,则点C的坐标为( )ABCD2下列运算正确的是()Ax2x3x6Bx2+x22x4C(2x)24x2D( a+b)2a2+b23已知反比例函数y=的图象在一、三象限,那么直线y=kxk不经过第()象限A一B二C三D四4甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息已知甲先出发2s在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:a8;b92;c1其中正确的是( )AB仅有C仅有D仅有5抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A中位数 B众数 C平均数 D方差6若正比例函数ykx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为()AB3CD37如图,平行四边形ABCD的顶点A、B、D在O上,顶点C在O直径BE上,连结AE,若E=36°,则ADC的度数是( )A44°B53°C72°D54°8某反比例函数的图象经过点(-2,3),则此函数图象也经过( )A(2,-3)B(-3,3)C(2,3)D(-4,6)9如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()ABCD10如图,小明将一张长为20cm,宽为15cm的长方形纸(AEDE)剪去了一角,量得AB3cm,CD4cm,则剪去的直角三角形的斜边长为()A5cmB12cmC16cmD20cm二、填空题(本大题共6个小题,每小题3分,共18分)11从-5,-,-,-1,0,2,这七个数中随机抽取一个数,恰好为负整数的概率为_12如图所示,矩形ABCD的顶点D在反比例函数(x0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,BCE的面积是6,则k=_13如图,AB为圆O的直径,弦CDAB,垂足为点E,连接OC,若OC5,CD8,则AE_14(11·湖州)如图,已知A、B是反比例函数(k0,x0)图象上的两点,BCx轴,交y轴于点C动点P从坐标原点O出发,沿OABC(图中“”所示路线)匀速运动,终点为C过P作PMx轴,PNy轴,垂足分别为M、N设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为15如图,ABC的面积为6,平行于BC的两条直线分别交AB,AC于点D,E,F,G若AD=DF=FB,则四边形DFGE的面积为_16分解因:=_三、解答题(共8题,共72分)17(8分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.18(8分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示平均分(分)中位数(分)众数(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定19(8分)如图,AB是半径为2的O的直径,直线l与AB所在直线垂直,垂足为C,OC3,P是圆上异于A、B的动点,直线AP、BP分别交l于M、N两点(1)当A30°时,MN的长是 ;(2)求证:MCCN是定值;(3)MN是否存在最大或最小值,若存在,请写出相应的最值,若不存在,请说明理由;(4)以MN为直径的一系列圆是否经过一个定点,若是,请确定该定点的位置,若不是,请说明理由20(8分)在ABC中,ABAC,以AB为直径的O交AC于点E,交BC于点D,P为AC延长线上一点,且PBCBAC,连接DE,BE(1)求证:BP是O的切线;(2)若sinPBC,AB10,求BP的长21(8分)计算:(1-n)0-|3-2 |+(- )-1+4cos30°.22(10分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(1810)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10x50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?23(12分)如图,已知点D在反比例函数y=的图象上,过点D作x轴的平行线交y轴于点B(0,3)过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tanOAC=(1)求反比例函数y=和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求BMC的度数24黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿)因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据A点坐标即可建立平面直角坐标【详解】解:由A(0,2),B(1,1)可知原点的位置,建立平面直角坐标系,如图,C(2,-1)故选:C【点睛】本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型2、C【解析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可【详解】A、x2x3x5,故A选项错误;B、x2+x22x2,故B选项错误;C、(2x)24x2,故C选项正确;D、( a+b)2a2+2ab+b2,故D选项错误,故选C【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键3、B【解析】根据反比例函数的性质得k0,然后根据一次函数的进行判断直线y=kx-k不经过的象限【详解】反比例函数y=的图象在一、三象限,k0,直线y=kxk经过第一、三、四象限,即不经过第二象限故选:B【点睛】考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式也考查了反比例函数与一次函数的性质4、A【解析】解:乙出发时甲行了2秒,相距8m,甲的速度为8/24m/ s100秒时乙开始休息乙的速度是500/1005m/ sa秒后甲乙相遇,a8/(54)8秒因此正确100秒时乙到达终点,甲走了4×(1002)408 m,b50040892 m 因此正确甲走到终点一共需耗时500/4125 s,c12521 s 因此正确终上所述,结论皆正确故选A5、A【解析】7人成绩的中位数是第4名的成绩参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.6、B【解析】设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解【详解】设该点的坐标为(a,b),则|b|1|a|,点(a,b)在正比例函数ykx的图象上,k±1又y值随着x值的增大而减小,k1故选:B【点睛】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键7、D【解析】根据直径所对的圆周角为直角可得BAE=90°,再根据直角三角形的性质和平行四边形的性质可得解.【详解】根据直径所对的圆周角为直角可得BAE=90°,根据E=36°可得B=54°,根据平行四边形的性质可得ADC=B=54°.故选D【点睛】本题考查了平行四边形的性质、圆的基本性质.8、A【解析】设反比例函数y=(k为常数,k0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断【详解】设反比例函数y=(k为常数,k0),反比例函数的图象经过点(-2,3),k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,点(2,-3)在反比例函数y=- 的图象上故选A【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k9、D【解析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1故选D【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键10、D【解析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1则剪去的直角三角形的斜边长为1cm故选D【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】七个数中有两个负整数,故随机抽取一个数,恰好为负整数的概率是:【详解】 这七个数中有两个负整数:-5,-1所以,随机抽取一个数,恰好为负整数的概率是:故答案为【点睛】本题考查随机事件的概率的计算方法,能准确找出负整数的个数,并熟悉等可能事件的概率计算公式是关键12、-1【解析】先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据BCE的面积是6,得出BC×OE=1,最后根据ABOE,得出,即BCEO=ABCO,求得ab的值即可【详解】设D(a,b),则CO=-a,CD=AB=b,矩形ABCD的顶点D在反比例函数y=(x0)的图象上,k=ab,BCE的面积是6,×BC×OE=6,即BC×OE=1,ABOE,即BCEO=ABCO,1=b×(-a),即ab=-1,k=-1,故答案为-1【点睛】本题主要考查了反比例函数系数k的几何意义,矩形的性质以及平行线分线段成比例定理的综合应用,能很好地考核学生分析问题,解决问题的能力解题的关键是将BCE的面积与点D的坐标联系在一起,体现了数形结合的思想方法13、2【解析】试题解析:AB为圆O的直径,弦CDAB,垂足为点E.在直角OCE中, 则AE=OAOE=53=2.故答案为2.14、A【解析】试题分析:当点P在OA上运动时,OP=t,S=OMPM=tcostsin,角度固定,因此S是以y轴为对称轴的二次函数,开口向上;当点P在AB上运动时,设P点坐标为(x,y),则S=xy=k,为定值,故B、D选项错误;当点P在BC上运动时,S随t的增大而逐渐减小,故C选项错误故选A考点:1.反比例函数综合题;2.动点问题的函数图象15、1【解析】先根据题意可证得ABCADE,ABCAFG,再根据ABC的面积为6分别求出ADE与AFG的面积,则四边形DFGE的面积=SAFG-SADE.【详解】解:DEBC,,ADEABC,AD=DF=FB,=()1,即=()1,SADE=;FGBC,AFGABC,=()1,即=()1,SAFG=;S四边形DFGE= SAFG- SADE=-=1.故答案为:1.【点睛】本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.16、 (x-2y)(x-2y+1)【解析】根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【详解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)三、解答题(共8题,共72分)17、112.1【解析】试题分析:(1)根据题意即可求得y与x的函数关系式为y=302x与自变量x的取值范围为6x11;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值试题解析:解:(1)y=302x(6x11)(2)设矩形苗圃园的面积为S,则S=xy=x(302x)=2x2+30x,S=2(x7.1)2+112.1,由(1)知,6x11,当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1点睛:此题考查了二次函数的实际应用问题解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可18、(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定【解析】分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.【详解】详解: (1)初中5名选手的平均分,众数b=85,高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3)=70,初中代表队选手成绩比较稳定【点睛】本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.19、(1);(2)MCNC5;(3)a+b的最小值为2;(4)以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD的长为【解析】(1)由题意得AOOB2、OC3、AC5、BC1,根据MCACtanA 、CN可得答案;(2)证ACMNCB得,由此即可求得答案;(3)设MCa、NCb,由(2)知ab5,由P是圆上异于A、B的动点知a0,可得b(a0),根据反比例函数的性质得a+b不存在最大值,当ab时,a+b最小,据此求解可得;(4)设该圆与AC的交点为D,连接DM、DN,证MDCDNC得,即MCNCDC25,即DC,据此知以MN为直径的一系列圆经过定点D,此顶点D在直线AB上且CD的长为【详解】(1)如图所示,根据题意知,AOOB2、OC3,则ACOA+OC5,BCOCOB1,AC直线l,ACMACN90°,MCACtanA5×,ABPNBC,BNCA30°,CN,则MNMC+CN+,故答案为:;(2)ACMNCB90°,ABNC,ACMNCB,即MCNCACBC5×15;(3)设MCa、NCb,由(2)知ab5,P是圆上异于A、B的动点,a0,b(a0),根据反比例函数的性质知,a+b不存在最大值,当ab时,a+b最小,由ab得a,解之得a(负值舍去),此时b,此时a+b的最小值为2;(4)如图,设该圆与AC的交点为D,连接DM、DN,MN为直径,MDN90°,则MDC+NDC90°,DCMDCN90°,MDC+DMC90°,NDCDMC,则MDCDNC,即MCNCDC2,由(2)知MCNC5,DC25,DC,以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD的长为【点睛】本题考查的是圆的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用、反比例函数的性质等知识点20、(1)证明见解析;(2) 【解析】(1)连接AD,求出PBCABC,求出ABP90°,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可【详解】解:(1)连接AD,AB是O的直径,ADB=90°,ADBC,AB=AC,AD平分BAC,BAD=BAC,ADB=90°,BAD+ABD=90°,PBC=BAC,PBC+ABD=90°,ABP=90°,即ABBP,PB是O的切线;(2)PBC=BAD,sinPBC=sinBAD,sinPBC=,AB=10,BD=2,由勾股定理得:AD=4,BC=2BD=4,由三角形面积公式得:AD×BC=BE×AC,4×4=BE×10,BE=8,在RtABE中,由勾股定理得:AE=6,BAE=BAP,AEB=ABP=90°,ABEAPB,=,PB=【点睛】本题考查了切线的判定、圆周角定理、勾股定理、解直角三角形、相似三角形的性质和判定等知识点,能综合运用性质定理进行推理是解此题的关键21、1【解析】根据实数的混合计算,先把各数化简再进行合并.【详解】原式=1+3-2-3+2=1【点睛】此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.22、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到300.1(x10)=16,解方程即可求解;(3)由于根据(1)得到x1,又一次销售x(x10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y=,然后可以得到函数的增减性,再结合已知条件即可解决问题试题解析:(1)设一次购买x只,则300.1(x10)=16,解得:x=1答:一次至少买1只,才能以最低价购买;(3)当10x1时,y=300.1(x10)13x=,当x1时,y=(1613)x=4x;综上所述:;(3)y=,当10x45时,y随x的增大而增大,即当卖的只数越多时,利润更大当45x1时,y随x的增大而减小,即当卖的只数越多时,利润变小且当x=46时,y1=303.4,当x=1时,y3=3y1y3即出现了卖46只赚的钱比卖1只赚的钱多的现象当x=45时,最低售价为300.1(4510)=16.5(元),此时利润最大故店家一次应卖45只,最低售价为16.5元,此时利润最大考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论23、(1),(2)ACCD(3)BMC=41°【解析】分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;(2)由条件可证明OACBCD,再由角的和差可求得OAC+BCA=90°,可证得ACCD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出ACD为等腰直角三角形,则可求得答案本题解析:(1)A(1,0),OA=1tanOAC=,解得OC=2,C(0,2),BD=OC=2,B(0,3),BDx轴,D(2,3),m=2×3=6,y=,设直线AC关系式为y=kx+b,过A(1,0),C(0,2),解得,y=x2;(2)B(0,3),C(0,2),BC=1=OA,在OAC和BCD中,OACBCD(SAS),AC=CD,OAC=BCD,BCD+BCA=OAC+BCA=90°,ACCD;(3)BMC=41°如图,连接AD,AE=OC,BD=OC,AE=BD,BDx轴,四边形AEBD为平行四边形,ADBM,BMC=DAC,OACBCD,AC=CD,ACCD,ACD为等腰直角三角形,BMC=DAC=41°24、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.【解析】(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题【详解】(1)解:设2018至2020年寝室数量的年平均增长率为x,根据题意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=2.375(不合题意,舍去)答:2018至2020年寝室数量的年平均增长率为37.5%(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(1216y)间,单人间的数量在20至30之间(包括20和30), ,解得:15 y16 根据题意得:w=2y+20y+1216y=16y+121,当y=16时,16y+121取得最大值为1答:该校的寝室建成后最多可供1名师生住宿【点睛】本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式