2022-2023学年福建省泉州市第五中学中考数学模拟试题含解析.doc
-
资源ID:87799750
资源大小:814KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年福建省泉州市第五中学中考数学模拟试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A8.23×106B8.23×107C8.23×106D8.23×1072某种超薄气球表面的厚度约为,这个数用科学记数法表示为( )ABCD3已知O1与O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是( )A相交 B内切 C外离 D内含4(2017鄂州)如图四边形ABCD中,ADBC,BCD=90°,AB=BC+AD,DAC=45°,E为CD上一点,且BAE=45°若CD=4,则ABE的面积为( )A B C D5y=(m1)x|m|+3m表示一次函数,则m等于()A1B1C0或1D1或16由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A3B4C5D67我国古代数学家刘徽创立的“割圆术”可以估算圆周率,理论上能把的值计算到任意精度祖冲之继承并发展了“割圆术”,将的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()AB2CD8济南市某天的气温:-58,则当天最高与最低的温差为( )A13B3C-13D-39二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( ) ABCD10如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上如果1=20°,那么2的度数是( )A30°B25°C20°D15°二、填空题(共7小题,每小题3分,满分21分)11若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_12如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取ABC和DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取A1B1C1和D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去,则正六角星形A4F4B4D4C4E4的面积为_13一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_14如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_15(题文)如图1,点P从ABC的顶点B出发,沿BCA匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则ABC的面积是_16如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM4米,AB8米,MAD45°,MBC30°,则警示牌的高CD为米.(结果精确到0.1米,参考数据:1.41,1.73)17如图,在ABC中,ACB90°,点D是CB边上一点,过点D作DEAB于点E,点F是AD的中点,连结EF、FC、CE若AD2,CFE90°,则CE_三、解答题(共7小题,满分69分)18(10分)如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同 .19(5分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90°,B=E=30°. 操作发现如图1,固定ABC,使DEC绕点C旋转当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;设BDC的面积为S1,AEC的面积为S1则S1与S1的数量关系是 猜想论证当DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC,CE边上的高,请你证明小明的猜想拓展探究已知ABC=60°,点D是其角平分线上一点,BD=CD=4,OEAB交BC于点E(如图4),若在射线BA上存在点F,使SDCF=SBDC,请直接写出相应的BF的长20(8分)某中学九年级数学兴趣小组想测量建筑物AB的高度他们在C处仰望建筑物顶端A处,测得仰角为,再往建筑物的方向前进6米到达D处,测得仰角为,求建筑物的高度测角器的高度忽略不计,结果精确到米,21(10分)如图,直线yx+2与反比例函数 (k0)的图象交于A(a,3),B(3,b)两点,过点A作ACx轴于点C,过点B作BDx轴于点D求a,b的值及反比例函数的解析式;若点P在直线yx+2上,且SACPSBDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由22(10分)如图,是等腰三角形,.(1)尺规作图:作的角平分线,交于点(保留作图痕迹,不写作法);(2)判断是否为等腰三角形,并说明理由.23(12分)某船的载重为260吨,容积为1000m1现有甲、乙两种货物要运,其中甲种货物每吨体积为8m1,乙种货物每吨体积为2m1,若要充分利用这艘船的载重与容积,求甲、乙两种货物应各装的吨数(设装运货物时无任何空隙)24(14分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且ECF45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH填空:AHC ACG;(填“”或“”或“”)线段AC,AG,AH什么关系?请说明理由;设AEm,AGH的面积S有变化吗?如果变化请求出S与m的函数关系式;如果不变化,请求出定值请直接写出使CGH是等腰三角形的m值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定详解:0.000000823=8.23×10-1故选B点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定2、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】,故选:A【点睛】本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定3、A【解析】试题分析:O1和O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5345+3,根据圆心距与半径之间的数量关系可知O1与O2相交故选A考点:圆与圆的位置关系4、D【解析】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FHAB于H,EKAB于K作BTAD于TBCAG,BCF=FDG,BFC=DFG,FC=DF,BCFGDF,BC=DG,BF=FG,AB=BC+AD,AG=AD+DG=AD+BC,AB=AG,BF=FG,BFBG,ABF=G=CBF,FHBA,FCBC,FH=FC,易证FBCFBH,FAHFAD,BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在RtABT中,AB2=BT2+AT2,(x+4)2=42+(4x)2,x=1,BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,42+z2=y2,(5y)2+y2=12+(4z)2,由可得y=,SABE=×5×=,故选D点睛:本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题5、B【解析】由一次函数的定义知,|m|=1且m-10,所以m=-1,故选B.6、B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体故选B7、C【解析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6××1×1×sin60°=故选C【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答8、A【解析】由题意可知,当天最高温与最低温的温差为8-(-5)=13,故选A.9、D【解析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解【详解】二次函数图象开口方向向上,a>0,对称轴为直线 b<0,二次函数图形与轴有两个交点,则>0,当x=1时y=a+b+c<0,的图象经过第二四象限,且与y轴的正半轴相交,反比例函数图象在第二、四象限,只有D选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.10、B【解析】根据题意可知1+2+45°=90°,2=90°145°=25°,二、填空题(共7小题,每小题3分,满分21分)11、2【解析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长依此列出方程即可【详解】设母线长为x,根据题意得2x÷2=2×5,解得x=1故答案为2【点睛】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大12、【解析】正六角星形A2F2B2D2C2E2边长是正六角星形A1F1B1D1C1E边长的,正六角星形A2F2B2D2C2E2面积是正六角星形A1F1B1D1C1E面积的同理正六角星形A4F4B4D4C4E4边长是正六角星形A1F1B1D1C1E边长的,正六角星形A4F4B4D4C4E4面积是正六角星形A1F1B1D1C1E面积的13、 【解析】分析:根据概率的计算公式颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb所以颜色搭配正确的概率是故答案为:点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=14、【解析】解:如图,作OHDK于H,连接OK,以AD为直径的半圆,正好与对边BC相切,AD=2CD根据折叠对称的性质,A'D=2CDC=90°,DA'C=30°ODH=30°DOH=60°DOK=120°扇形ODK的面积为ODH=OKH=30°,OD=3cm,ODK的面积为半圆还露在外面的部分(阴影部分)的面积是:故答案为:15、12【解析】根据题意观察图象可得BC=5,点P在AC上运动时,BPAC时,BP有最小值,观察图象可得,BP的最小值为4,即BPAC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.16、2.9【解析】试题分析:在RtAMD中,MAD=45°,AM=4米,可得MD=4米;在RtBMC中,BM=AM+AB=12米,MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考点:解直角三角形.17、【解析】根据直角三角形的中点性质结合勾股定理解答即可.【详解】解:,点F是AD的中点, .故答案为: .【点睛】此题重点考查学生对勾股定理的理解。熟练掌握勾股定理是解题的关键.三、解答题(共7小题,满分69分)18、甲、乙获胜的机会不相同.【解析】试题分析:先画出树状图列举出所有情况,再分别算出甲、乙获胜的概率,比较即可判断.甲、乙获胜的机会不相同.考点:可能性大小的判断点评:本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.19、解:(1)DEAC(1)仍然成立,证明见解析;(3)3或2【解析】(1)由旋转可知:AC=DC,C=90°,B=DCE=30°,DAC=CDE=20°ADC是等边三角形DCA=20°DCA=CDE=20°DEAC过D作DNAC交AC于点N,过E作EMAC交AC延长线于M,过C作CFAB交AB于点F 由可知:ADC是等边三角形, DEAC,DN=CF,DN=EMCF=EMC=90°,B =30°AB=1AC又AD=ACBD=AC(1)如图,过点D作DMBC于M,过点A作ANCE交EC的延长线于N,DEC是由ABC绕点C旋转得到,BC=CE,AC=CD,ACN+BCN=90°,DCM+BCN=180°-90°=90°,ACN=DCM,在ACN和DCM中, ,ACNDCM(AAS),AN=DM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S1; (3)如图,过点D作DF1BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时SDCF1=SBDE;过点D作DF1BD,ABC=20°,F1DBE,F1F1D=ABC=20°,BF1=DF1,F1BD=ABC=30°,F1DB=90°,F1DF1=ABC=20°,DF1F1是等边三角形,DF1=DF1,过点D作DGBC于G,BD=CD,ABC=20°,点D是角平分线上一点,DBC=DCB=×20°=30°,BG=BC=,BD=3CDF1=180°-BCD=180°-30°=150°,CDF1=320°-150°-20°=150°,CDF1=CDF1,在CDF1和CDF1中,CDF1CDF1(SAS),点F1也是所求的点,ABC=20°,点D是角平分线上一点,DEAB,DBC=BDE=ABD=×20°=30°,又BD=3,BE=×3÷cos30°=3,BF1=3,BF1=BF1+F1F1=3+3=2,故BF的长为3或220、14.2米;【解析】RtADB中用AB表示出BD、RtACB中用AB表示出BC,根据CD=BC-BD可得关于AB 的方程,解方程可得【详解】设米C=45°在中,米, 又米,在中TanADB= ,Tan60°=解得答,建筑物的高度为米【点睛】本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件21、(1)y;(2)P(0,2)或(3,5);(3)M(,0)或(,0)【解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出SACP×3×|n1|,SBDP×1×|3n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2(m1)29,MB2(m3)21,AB232,再三种情况建立方程求解即可得出结论【详解】(1)直线yx2与反比例函数y(k0)的图象交于A(a,3),B(3,b)两点,a23,32b,a1,b1,A(1,3),B(3,1),点A(1,3)在反比例函数y上,k1×33,反比例函数解析式为y; (2)设点P(n,n2),A(1,3),C(1,0),B(3,1),D(3,0),SACPAC×|xPxA|×3×|n1|,SBDPBD×|xBxP|×1×|3n|,SACPSBDP,×3×|n1|×1×|3n|,n0或n3,P(0,2)或(3,5);(3)设M(m,0)(m0),A(1,3),B(3,1),MA2(m1)29,MB2(m3)21,AB2(31)2(13)232,MAB是等腰三角形,当MAMB时,(m1)29(m3)21,m0,(舍)当MAAB时,(m1)2932,m1或m1(舍),M(1,0)当MBAB时,(m3)2132,m3或m3(舍),M(3,0)即:满足条件的M(1,0)或(3,0)【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键22、(1)作图见解析 (2)为等腰三角形【解析】(1)作角平分线,以B点为圆心,任意长为半径,画圆弧;交直线AB于1点,直线BC于2点,再以2点为圆心,任意长为半径,画圆弧,再以1点为圆心,任意长为半径,画圆弧,相交于3点,连接3点和O点,直线3O即是已知角AOB的对称中心线.(2)分别求出的三个角,看是否有两个角相等,进而判断是否为等腰三角形.【详解】(1)具体如下:(2)在等腰中,BD为ABC的平分线,故,那么在中,是否为等腰三角形.【点睛】本题考查角平分线的作法,以及判定等腰三角形的方法.熟悉了解角平分线的定义以及等腰三角形的判定方法是解题的关键所在.23、这艘船装甲货物80吨,装乙货物180吨【解析】根据题意先列二元一次方程,再解方程即可.【详解】解:设这艘船装甲货物x吨,装乙货物y吨,根据题意,得解得答:这艘船装甲货物80吨,装乙货物180吨【点睛】此题重点考查学生对二元一次方程的应用能力,熟练掌握二元一次方程的解法是解题的关键.24、(1)=;(2)结论:AC2AGAH理由见解析;(3)AGH的面积不变m的值为或2或84.【解析】(1)证明DAC=AHC+ACH=43°,ACH+ACG=43°,即可推出AHC=ACG;(2)结论:AC2=AGAH只要证明AHCACG即可解决问题;(3)AGH的面积不变理由三角形的面积公式计算即可;分三种情形分别求解即可解决问题.【详解】(1)四边形ABCD是正方形,ABCBCDDA4,DDAB90°DACBAC43°,AC,DACAHC+ACH43°,ACH+ACG43°,AHCACG故答案为(2)结论:AC2AGAH理由:AHCACG,CAHCAG133°,AHCACG,AC2AGAH(3)AGH的面积不变理由:SAGHAHAGAC2×(4)21AGH的面积为1如图1中,当GCGH时,易证AHGBGC,可得AGBC4,AHBG8,BCAH,,AEAB如图2中,当CHHG时,易证AHBC4,BCAH,1,AEBE2如图3中,当CGCH时,易证ECBDCF22.3在BC上取一点M,使得BMBE,BMEBEM43°,BMEMCE+MEC,MCEMEC22.3°,CMEM,设BMBEm,则CMEMm,m+m4,m4(1),AE44(1)84,综上所述,满足条件的m的值为或2或84【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题