2022-2023学年湖南省澧县联考中考适应性考试数学试题含解析.doc
-
资源ID:87799768
资源大小:894KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年湖南省澧县联考中考适应性考试数学试题含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1下列运算结果正确的是()A3aa=2 B(ab)2=a2b2Ca(a+b)=a2+b D6ab2÷2ab=3b2一个多边形的每个内角均为120°,则这个多边形是( )A四边形B五边形C六边形D七边形3如图,ABC中,若DEBC,EFAB,则下列比例式正确的是( )ABCD4如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )ABCD5下列各式计算正确的是( )A(b+2a)(2ab)=b24a2B2a3+a3=3a6Ca3a=a4D(a2b)3=a6b36实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )Aa2Ba3CabDab7如图,平行四边形ABCD的周长为12,A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()ABCD8图中三视图对应的正三棱柱是()ABCD9在下列函数中,其图象与x轴没有交点的是()Ay=2xBy=3x+1Cy=x2Dy=10已知O的半径为5,若OP=6,则点P与O的位置关系是()A点P在O内B点P在O外C点P在O上D无法判断二、填空题(本大题共6个小题,每小题3分,共18分)11因式分解:3a2-6a+3=_12若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_13若2x+y=2,则4x+1+2y的值是_14已知式子有意义,则x的取值范围是_15如果a2b2=8,且a+b=4,那么ab的值是_16点A(1,2),B(n,2)都在抛物线y=x24x+m上,则n=_三、解答题(共8题,共72分)17(8分)已知抛物线y=x26x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D(1)求抛物线的顶点C的坐标及A,B两点的坐标;(2)将抛物线y=x26x+9向上平移1个单位长度,再向左平移t(t0)个单位长度得到新抛物线,若新抛物线的顶点E在DAC内,求t的取值范围;(3)点P(m,n)(3m1)是抛物线y=x26x+9上一点,当PAB的面积是ABC面积的2倍时,求m,n的值18(8分)如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.(1)求抛物线的函数表达式;(2)设直线与抛物线的对称轴的交点为,是抛物线上位于对称轴右侧的一点,若,且与的面积相等,求点的坐标;(3)若在轴上有且只有一点,使,求的值.19(8分)在ABC中,ABAC,以AB为直径的O交AC于点E,交BC于点D,P为AC延长线上一点,且PBCBAC,连接DE,BE(1)求证:BP是O的切线;(2)若sinPBC,AB10,求BP的长20(8分)已知ab3,ab2,求代数式a3b2a2b2ab3的值21(8分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示当10x60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;若两次购买鞋子共花费9200元,求第一次的购买数量;如何规划两次购买的方案,使所花费用最少,最少多少元?22(10分)二次函数y=x22mx+5m的图象经过点(1,2)(1)求二次函数图象的对称轴;(2)当4x1时,求y的取值范围23(12分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为求 x 和 y 的值24某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示(1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】各项计算得到结果,即可作出判断【详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键2、C【解析】由题意得,180°(n-2)=120°,解得n=6.故选C.3、C【解析】根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解【详解】解:DEBC,BDBC,选项A不正确;DEBC,EFAB,EF=BD,选项B不正确;EFAB,选项C正确;DEBC,EFAB,=,CEAE,选项D不正确;故选C【点睛】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健4、A【解析】由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式【详解】解:大正方形的面积-小正方形的面积=,矩形的面积=,故,故选:A【点睛】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键5、C【解析】各项计算得到结果,即可作出判断解:A、原式=4a2b2,不符合题意;B、原式=3a3,不符合题意;C、原式=a4,符合题意;D、原式=a6b3,不符合题意,故选C6、D【解析】试题分析:A如图所示:3a2,故此选项错误;B如图所示:3a2,故此选项错误;C如图所示:1b2,则2b1,又3a2,故ab,故此选项错误;D由选项C可得,此选项正确故选D考点:实数与数轴7、C【解析】过点B作BEAD于E,构建直角ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.【详解】如图,过点B作BEAD于E.A60°,设AB边的长为x,BEABsin60°x.平行四边形ABCD的周长为12,AB(122x)6x,yADBE(6x)×x(0x6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.【点睛】本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.8、A【解析】由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解【详解】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确故选A【点睛】本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键9、D【解析】依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可【详解】A正比例函数y=2x与x轴交于(0,0),不合题意;B一次函数y=-3x+1与x轴交于(,0),不合题意;C二次函数y=x2与x轴交于(0,0),不合题意;D反比例函数y=与x轴没有交点,符合题意;故选D10、B【解析】比较OP与半径的大小即可判断.【详解】,点P在外,故选B【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.二、填空题(本大题共6个小题,每小题3分,共18分)11、3(a1)2【解析】先提公因式,再套用完全平方公式.【详解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.【点睛】考点:提公因式法与公式法的综合运用12、【解析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可【详解】圆锥的底面圆的周长是,圆锥的侧面扇形的弧长为 cm,解得:故答案为【点睛】此题考查弧长的计算,解题关键在于求得圆锥的侧面积13、1【解析】分析:将原式化简成2(2x+y)+1,然后利用整体代入的思想进行求解得出答案详解:原式=2(2x+y)+1=2×2+1=1点睛:本题主要考查的是整体思想求解,属于基础题型找到整体是解题的关键14、x1且x1【解析】根据二次根式有意义,分式有意义得:1x0且x+10,解得:x1且x1故答案为x1且x115、1【解析】根据(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案【详解】a1-b1=8,(a+b)(a-b)=8,a+b=4,a-b=1,故答案是:1【点睛】考查了平方差,关键是掌握(a+b)(a-b)=a1-b116、1【解析】根据题意可以求得m的值和n的值,由A的坐标,可确定B的坐标,进而可以得到n的值【详解】:点A(1,2),B(n,2)都在抛物线y=x2-4x+m上, ,解得 或 ,点B为(1,2)或(1,2),点A(1,2),点B只能为(1,2),故n的值为1,故答案为:1【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质求解三、解答题(共8题,共72分)17、(1)C(2,0),A(1,4),B(1,9);(2)t5;(2)m=,n=.【解析】分析:()将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标 ()由题意可知:新抛物线的顶点坐标为(2t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在DAC内,求t的取值范围 ()直线AB与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),易得CFAB,PAB的面积是ABC面积的2倍,所以ABPM=ABCF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n(m+2),所以n=m+4,由于P(m,n)在抛物线y=x21x+9上,联立方程从而可求出m、n的值详解:(I)y=x21x+9=(x2)2,顶点坐标为(2,0) 联立, 解得:或; (II)由题意可知:新抛物线的顶点坐标为(2t,1),设直线AC的解析式为y=kx+b 将A(1,4),C(2,0)代入y=kx+b中, 解得:, 直线AC的解析式为y=2x+1 当点E在直线AC上时,2(2t)+1=1,解得:t= 当点E在直线AD上时,(2t)+2=1,解得:t=5,当点E在DAC内时,t5; (III)如图,直线AB与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),OD=OF=2 FOD=90°,OFD=ODF=45° OC=OF=2,FOC=90°,CF=2,OFC=OCF=45°, DFC=DFO+OFC=45°+45°=90°,CFAB PAB的面积是ABC面积的2倍,ABPM=ABCF, PM=2CF=1 PNx轴,FDO=45°,DGN=45°,PGM=45°在RtPGM中,sinPGM=, PG=3 点G在直线y=x+2上,P(m,n), G(m,m+2) 2m1,点P在点G的上方,PG=n(m+2),n=m+4 P(m,n)在抛物线y=x21x+9上,m21m+9=n,m21m+9=m+4,解得:m= 2m1,m=不合题意,舍去,m=,n=m+4= 点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识18、(1).;(2)点坐标为;.(3).【解析】分析:(1)根据已知列出方程组求解即可;(2)作AMx轴,BNx轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别求出G点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可详解:(1)由题可得:解得,.二次函数解析式为:.(2)作轴,轴,垂足分别为,则.,解得,.同理,., (在下方),即,.,.在上方时,直线与关于对称.,.,.综上所述,点坐标为;.(3)由题意可得:.,即.,.设的中点为,点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.轴,为的中点,.,即,.,.点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键19、(1)证明见解析;(2) 【解析】(1)连接AD,求出PBCABC,求出ABP90°,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可【详解】解:(1)连接AD,AB是O的直径,ADB=90°,ADBC,AB=AC,AD平分BAC,BAD=BAC,ADB=90°,BAD+ABD=90°,PBC=BAC,PBC+ABD=90°,ABP=90°,即ABBP,PB是O的切线;(2)PBC=BAD,sinPBC=sinBAD,sinPBC=,AB=10,BD=2,由勾股定理得:AD=4,BC=2BD=4,由三角形面积公式得:AD×BC=BE×AC,4×4=BE×10,BE=8,在RtABE中,由勾股定理得:AE=6,BAE=BAP,AEB=ABP=90°,ABEAPB,=,PB=【点睛】本题考查了切线的判定、圆周角定理、勾股定理、解直角三角形、相似三角形的性质和判定等知识点,能综合运用性质定理进行推理是解此题的关键20、1【解析】先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解【详解】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=1故代数式a3b+2a2b2+ab3的值是121、(1)y150x; (2)第一批购买数量为30双或40双第一次买26双,第二次买74双最省钱,最少9144元【解析】(1)若购买x双(10x1),每件的单价140(购买数量10),依此可得y关于x的函数关系式;(2)设第一批购买x双,则第二批购买(100x)双,根据购买两批鞋子一共花了9200元列出方程求解即可分两种情况考虑:当25x40时,则1100x75;当40x1时,则40100x1把两次的花费与第一次购买的双数用函数表示出来【详解】解:(1)购买x双(10x1)时,y140(x10)150x故y关于x的函数关系式是y150x;(2)设第一批购买x双,则第二批购买(100x)双当25x40时,则1100x75,则x(150x)+80(100x)9200,解得x130,x240;当40x1时,则40100x1,则x(150x)+(100x)150(100x)9200,解得x30或x70,但40x1,所以无解;答:第一批购买数量为30双或40双设第一次购买x双,则第二次购买(100x)双,设两次花费w元当25x40时wx(150x)+80(100x)(x35)2+9225,x26时,w有最小值,最小值为9144元;当40x1时,wx(150x)+(100x)150(100x)2(x50)2+10000,x41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解22、(1)x=-1;(2)6y1;【解析】(1)根据抛物线的对称性和待定系数法求解即可;(2)根据二次函数的性质可得【详解】(1)把点(1,2)代入y=x22mx+5m中,可得:12m+5m=2,解得:m=1,所以二次函数y=x22mx+5m的对称轴是x=,(2)y=x2+2x5=(x+1)26,当x=1时,y取得最小值6,由表可知当x=4时y=1,当x=1时y=6,当4x1时,6y1【点睛】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键23、x=15,y=1【解析】根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有成立化简可得y与x的函数关系式;(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,解可得x=15,y=1【详解】依题意得,化简得,解得, .,检验当x=15,y=1时,x=15,y=1是原方程的解,经检验,符合题意.答:x=15,y=1.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=24、(1)10,1;(2)【解析】(1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;(2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可【详解】解:(1)图象过点, ,解得的顶点坐标为,当时,最大=1答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元(2)函数图象的对称轴为直线,可知点关于对称轴的对称点是,又函数图象开口向下,当时,答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元【点睛】本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质