欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    上海市闵行七校2023届高三下学期第六次检测数学试卷含解析.doc

    • 资源ID:87837020       资源大小:1.65MB        全文页数:17页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    上海市闵行七校2023届高三下学期第六次检测数学试卷含解析.doc

    2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知 ,且是的充分不必要条件,则的取值范围是( )ABCD2已知、,则下列是等式成立的必要不充分条件的是( )ABCD3函数的图象大致为( )ABCD4中国古代数学著作算法统宗中有这样一个问题;“三百七十八里关,初行健步不为难,次后脚痛递减半,六朝才得到其关,要见每朝行里数,请公仔细算相还.”其意思为:“有一个人走了378里路,第一天健步走行,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地,求该人每天走的路程.”由这个描述请算出这人第四天走的路程为( )A6里B12里C24里D48里5下列说法正确的是( )A“若,则”的否命题是“若,则”B在中,“”是“”成立的必要不充分条件C“若,则”是真命题D存在,使得成立6已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为()ABCD7已知平面和直线a,b,则下列命题正确的是( )A若,b,则B若,则C若,则D若,b,则8过点的直线与曲线交于两点,若,则直线的斜率为( )ABC或D或9若函数满足,且,则的最小值是( )ABCD10执行下面的程序框图,如果输入,则计算机输出的数是( )ABCD11若复数是纯虚数,则( )A3B5CD12若复数(为虚数单位),则的共轭复数的模为( )AB4C2D二、填空题:本题共4小题,每小题5分,共20分。13已知函数f(x)=axlnxbx(a,bR)在点(e,f(e)处的切线方程为y=3xe,则a+b=_.14抛物线的焦点到准线的距离为 15小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道作答,小李会其中的三道题,则抽到的2道题小李都会的概率为_.16工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在中,点在线段上.(1)若,求的长;(2)若,求的面积.18(12分)已知圆上有一动点,点的坐标为,四边形为平行四边形,线段的垂直平分线交于点.()求点的轨迹的方程;()过点作直线与曲线交于两点,点的坐标为,直线与轴分别交于两点,求证:线段的中点为定点,并求出面积的最大值.19(12分)已知中,内角所对边分别是其中.(1)若角为锐角,且,求的值;(2)设,求的取值范围.20(12分)已知在中,角、的对边分别为,.(1)若,求的值;(2)若,求的面积.21(12分)已知()过点,且当时,函数取得最大值1.(1)将函数的图象向右平移个单位得到函数,求函数的表达式;(2)在(1)的条件下,函数,求在上的值域.22(10分)如图,在三棱锥A­BCD中,ABAD,BCBD,平面ABD平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EFAD.求证:(1)EF平面ABC;(2)ADAC.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.【详解】由题意知:可化简为,所以中变量取值的集合是中变量取值集合的真子集,所以.【点睛】利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.2、D【解析】构造函数,利用导数分析出这两个函数在区间上均为减函数,由得出,分、三种情况讨论,利用放缩法结合函数的单调性推导出或,再利用余弦函数的单调性可得出结论.【详解】构造函数,则,所以,函数、在区间上均为减函数,当时,则,;当时,.由得.若,则,即,不合乎题意;若,则,则,此时,由于函数在区间上单调递增,函数在区间上单调递增,则,;若,则,则,此时,由于函数在区间上单调递减,函数在区间上单调递增,则,.综上所述,.故选:D.【点睛】本题考查函数单调性的应用,构造新函数是解本题的关键,解题时要注意对的取值范围进行分类讨论,考查推理能力,属于中等题.3、A【解析】确定函数在定义域内的单调性,计算时的函数值可排除三个选项【详解】时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,排除C,只有A可满足故选:A.【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项4、C【解析】设第一天走里,则是以为首项,以为公比的等比数列,由题意得,求出(里,由此能求出该人第四天走的路程【详解】设第一天走里,则是以为首项,以为公比的等比数列,由题意得:,解得(里,(里故选:C【点睛】本题考查等比数列的某一项的求法,考查等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题5、C【解析】A:否命题既否条件又否结论,故A错.B:由正弦定理和边角关系可判断B错.C:可判断其逆否命题的真假,C正确.D:根据幂函数的性质判断D错.【详解】解:A:“若,则”的否命题是“若,则”,故 A错.B:在中,故“”是“”成立的必要充分条件,故B错.C:“若,则”“若,则”,故C正确.D:由幂函数在递减,故D错.故选:C【点睛】考查判断命题的真假,是基础题.6、C【解析】由双曲线与双曲线有相同的渐近线,列出方程求出的值,即可求解双曲线的离心率,得到答案【详解】由双曲线与双曲线有相同的渐近线,可得,解得,此时双曲线,则曲线的离心率为,故选C【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题7、C【解析】根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足,b,故本命题不正确;B:当时,也可以满足,故本命题不正确;C:根据平行线的性质可知:当,时,能得到,故本命题是正确的;D:当时,也可以满足,b,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.8、A【解析】利用切割线定理求得,利用勾股定理求得圆心到弦的距离,从而求得,结合,求得直线的倾斜角为,进而求得的斜率.【详解】曲线为圆的上半部分,圆心为,半径为.设与曲线相切于点,则所以到弦的距离为,所以,由于,所以直线的倾斜角为,斜率为.故选:A【点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.9、A【解析】由推导出,且,将所求代数式变形为,利用基本不等式求得的取值范围,再利用函数的单调性可得出其最小值.【详解】函数满足,即,即,则,由基本不等式得,当且仅当时,等号成立.,由于函数在区间上为增函数,所以,当时,取得最小值.故选:A.【点睛】本题考查代数式最值的计算,涉及对数运算性质、基本不等式以及函数单调性的应用,考查计算能力,属于中等题.10、B【解析】先明确该程序框图的功能是计算两个数的最大公约数,再利用辗转相除法计算即可.【详解】本程序框图的功能是计算,中的最大公约数,所以,故当输入,则计算机输出的数是57.故选:B.【点睛】本题考查程序框图的功能,做此类题一定要注意明确程序框图的功能是什么,本题是一道基础题.11、C【解析】先由已知,求出,进一步可得,再利用复数模的运算即可【详解】由z是纯虚数,得且,所以,.因此,.故选:C.【点睛】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题.12、D【解析】由复数的综合运算求出,再写出其共轭复数,然后由模的定义计算模【详解】,故选:D【点睛】本题考查复数的运算,考查共轭复数与模的定义,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、0【解析】由题意,列方程组可求,即求.【详解】在点处的切线方程为,代入得.又.联立解得:.故答案为:0.【点睛】本题考查导数的几何意义,属于基础题.14、【解析】试题分析:由题意得,因为抛物线,即,即焦点到准线的距离为.考点:抛物线的性质15、【解析】从四道题中随机抽取两道共6种情况,抽到的两道全都会的情况有3种,即可得到概率.【详解】由题:从从4道题中随机抽取2道作答,共有种,小李会其中的三道题,则抽到的2道题小李都会的情况共有种,所以其概率为.故答案为:【点睛】此题考查根据古典概型求概率,关键在于根据题意准确求出基本事件的总数和某一事件包含的基本事件个数.16、60【解析】分析:首先将选定第一个钉,总共有6种方法,假设选定1号,之后分析第二步,第三步等,按照分类加法计数原理,可以求得共有10种方法,利用分步乘法计数原理,求得总共有种方法.详解:根据题意,第一个可以从6个钉里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号钉的时候,第二个可以选3,4,5号钉,依次选下去,可以得到共有10种方法,所以总共有种方法,故答案是60.点睛:该题考查的是有关分类加法计数原理和分步乘法计数原理,在解题的过程中,需要逐个的将对应的过程写出来,所以利用列举法将对应的结果列出,而对于第一个选哪个是机会均等的,从而用乘法运算得到结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先根据平方关系求出,再根据正弦定理即可求出;(2)分别在和中,根据正弦定理列出两个等式,两式相除,利用题目条件即可求出,再根据余弦定理求出,即可根据求出的面积【详解】(1)由,得,所以.由正弦定理得,即,得.(2)由正弦定理,在中,在中,又,由得,由余弦定理得,即,解得,所以的面积.【点睛】本题主要考查正余弦定理在解三角形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于基础题18、();()4.【解析】()先画出图形,结合垂直平分线和平行四边形性质可得为一定值,故可确定点轨迹为椭圆(),进而求解;()设直线方程为,点坐标分别为,联立直线与椭圆方程得,分别由点斜式求得直线KA的方程为,令得,同理得,由结合韦达定理即可求解,而,当重合交于点时,可求最值;【详解】(),所以点的轨迹是一个椭圆,且长轴长,半焦距,所以,轨迹的方程为.()当直线的斜率为0时,与曲线无交点.当直线的斜率不为0时,设过点的直线方程为,点坐标分别为.直线与椭圆方程联立得消去,得.则,.直线KA的方程为.令得.同理可得.所以.所以的中点为.不妨设点在点的上方,则.【点睛】本题考查根据椭圆的定义求椭圆的方程,椭圆中的定点定值问题,属于中档题19、(1);(2).【解析】(1)由正弦定理直接可求,然后运用两角和的正弦公式算出;(2)化简,由余弦定理得,利用基本不等式求出,确定角范围,进而求出的取值范围.【详解】(1)由正弦定理,得: ,且为锐角 (2) 【点睛】本题主要考查了正余弦定理的应用,基本不等式的应用,三角函数的值域等,考查了学生运算求解能力.20、(1)7(2)14【解析】(1)在中,可得 ,结合正弦定理,即可求得答案;(2)根据余弦定理和三角形面积公式,即可求得答案.【详解】(1)在中,.(2),解得,.【点睛】本题主要考查了正弦定理和余弦定理解三角形,解题关键是掌握正弦定理边化角,考查了分析能力和计算能力,属于中档题.21、 (1);(2).【解析】试题分析:(1)由题意可得函数f(x)的解析式为,则.(2)整理函数h(x)的解析式可得:,结合函数的定义域可得函数的值域为.试题解析:(1)由函数取得最大值1,可得,函数过得,.(2) ,值域为.22、(1)见解析(2)见解析【解析】试题分析:(1)先由平面几何知识证明,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得平面,则,再由ABAD及线面垂直判定定理得AD平面ABC,即可得ADAC试题解析:证明:(1)在平面内,因为ABAD,所以.又因为平面ABC,平面ABC,所以EF平面ABC.(2)因为平面ABD平面BCD,平面平面BCD=BD, 平面BCD,所以平面.因为平面,所以 .又ABAD,平面ABC,平面ABC,所以AD平面ABC,又因为AC平面ABC,所以ADAC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直

    注意事项

    本文(上海市闵行七校2023届高三下学期第六次检测数学试卷含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开