云南省昆明市云南师范大实验中学2022-2023学年中考考前最后一卷数学试卷含解析.doc
-
资源ID:87837274
资源大小:612KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
云南省昆明市云南师范大实验中学2022-2023学年中考考前最后一卷数学试卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1若,则的值是()A2B2C4D42已知一组数据,的平均数是2,方差是,那么另一组数据,的平均数和方差分别是ABCD3已知反比例函数y=,当1x3时,y的取值范围是()A0y1B1y2C2y1D6y24在数轴上表示不等式2(1x)4的解集,正确的是()ABCD5若关于x的方程 是一元二次方程,则m的取值范围是( )A.B.CD.6如图,在等腰直角三角形ABC中,C=90°,D为BC的中点,将ABC折叠,使点A与点D重合,EF为折痕,则sinBED的值是( )ABCD7如图,直线l1l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC若ABC=67°,则1=()A23°B46°C67°D78°8如图,ABC中,DE垂直平分AC交AB于E,A=30°,ACB=80°,则BCE等于()A40°B70°C60°D50°9如图所示的几何体的俯视图是( )ABCD10如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )A2cmB4cmC6cmD8cm二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在四边形纸片ABCD中,ABBC,ADCD,AC90°,B150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD_.12某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带_kg的行李13 “若实数a,b,c满足abc,则a+bc”,能够说明该命题是假命题的一组a,b,c的值依次为_14如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接BF,则图中阴影部分的面积是_15江苏省的面积约为101 600km1,这个数据用科学记数法可表示为_km116如图,利用图形面积的不同表示方法,能够得到的代数恒等式是_(写出一个即可)三、解答题(共8题,共72分)17(8分)如图,在ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF(1)求证:四边形BCFE是菱形;(2)若CE=4,BCF=120°,求菱形BCFE的面积18(8分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示)请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?19(8分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数(k>0),它的图象的伴侣正方形为ABCD,点D(2,m)(m2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4)写出伴侣正方形在抛物线上的另一个顶点坐标_,写出符合题意的其中一条抛物线解析式_,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_(本小题只需直接写出答案)20(8分)计算:|+(2017)02sin30°+3121(8分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图治理杨絮一一您选哪一项?(单选)A减少杨树新增面积,控制杨树每年的栽种量B调整树种结构,逐渐更换现有杨树C选育无絮杨品种,并推广种植D对雌性杨树注射生物干扰素,避免产生飞絮E其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有 人;(2)扇形统计图中,扇形E的圆心角度数是 ;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数22(10分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?23(12分)某公司销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示AB进价(万元/套)1.51.2售价(万元/套)1.81.4该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元(1)该公司计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?24为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:根据以上统计图,解答下列问题:本次接受调查的市民共有 人;扇形统计图中,扇形B的圆心角度数是 ;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】因为,所以,因为,故选D.2、D【解析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可【详解】解:数据x1,x2,x3,x4,x5的平均数是2,数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;数据x1,x2,x3,x4,x5的方差为,数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D【点睛】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.3、D【解析】根据反比例函数的性质可以求得y的取值范围,从而可以解答本题【详解】解:反比例函数y=,在每个象限内,y随x的增大而增大,当1x3时,y的取值范围是6y1故选D【点睛】本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答4、A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集 2(1 x)4去括号得:224移项得:2x2,系数化为1得:x1,故选A “点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变5、A【解析】根据一元二次方程的定义可得m10,再解即可【详解】由题意得:m10,解得:m1,故选A【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程6、A【解析】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直角三角形,EDF=45°,由三角形外角性质得CDF+45°=BED+45°,BED=CDF,设CD=1,CF=x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得x=,sinBED=sinCDF=故选:A7、B【解析】根据圆的半径相等可知AB=AC,由等边对等角求出ACB,再由平行得内错角相等,最后由平角180°可求出1.【详解】根据题意得:AB=AC,ACB=ABC=67°,直线l1l2,2=ABC=67°,1+ACB+2=180°,ACB=180°-1-ACB=180°-67°-67°=46º故选B【点睛】本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.8、D【解析】根据线段垂直平分线性质得出AE=CE,推出A=ACE=30°,代入BCE=ACB-ACE求出即可【详解】DE垂直平分AC交AB于E,AE=CE,A=ACE,A=30°,ACE=30°,ACB=80°,BCE=ACB-ACE=50°,故选D【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等9、B【解析】根据俯视图是从上往下看得到的图形解答即可.【详解】从上往下看得到的图形是:故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线10、B【解析】首先连接OC,AO,由切线的性质,可得OCAB,根据已知条件可得:OA=2OC,进而求出AOC的度数,则圆心角AOB可求,根据弧长公式即可求出劣弧AB的长【详解】解:如图,连接OC,AO,大圆的一条弦AB与小圆相切,OCAB,OA=6,OC=3,OA=2OC,A=30°,AOC=60°,AOB=120°,劣弧AB的长= =4,故选B【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键二、填空题(本大题共6个小题,每小题3分,共18分)11、或 【解析】根据裁开折叠之后平行四边形的面积可得CD的长度为2+4或2+【详解】如图,当四边形ABCE为平行四边形时,作AEBC,延长AE交CD于点N,过点B作BTEC于点T.ABBC,四边形ABCE是菱形BADBCD90°,ABC150°,ADC30°,BANBCE30°,NAD60°,AND90°.设BTx,则CNx,BCEC2x.四边形ABCE面积为2,EC·BT2,即2x×x2,解得x1,AEEC2,EN ,ANAEEN2 ,CDAD2AN42.如图,当四边形BEDF是平行四边形,BEBF,平行四边形BEDF是菱形AC90°,ABC150°,ADBBDC15°.BEDE,EBDADB15°,AEB30°.设ABy,则DEBE2y,AEy.四边形BEDF的面积为2,AB·DE2,即2y22,解得y1,AE,DE2,ADAEDE2.综上所述,CD的值为42或2.【点睛】考核知识点:平行四边形的性质,菱形判定和性质12、2【解析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得 ,解得, ,则y=30x-1当y=0时,30x-1=0,解得:x=2故答案为:2【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键13、答案不唯一,如1,2,3;【解析】分析:设a,b,c是任意实数若a<b<c,则a+b<c”是假命题,则若a<b<c,则a+bc”是真命题,举例即可,本题答案不唯一详解:设a,b,c是任意实数若a<b<c,则a+b<c”是假命题,则若a<b<c,则a+bc”是真命题,可设a,b,c的值依次1,2,3,(答案不唯一),故答案为1,2,3.点睛:本题考查了命题的真假,举例说明即可,14、6【解析】过F作FMBE于M,则FME=FMB=90°,四边形ABCD是正方形,AB=2,DCB=90°,DC=BC=AB=2,DCB=45°,由勾股定理得:BD=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,DCE=90°,BF=BD=2,FBE=90°-45°=45°,BM=FM=2,ME=2,阴影部分的面积=×2×2+×4×2+-=6-.故答案为:6-点睛:本题考查了旋转的性质,解直角三角形,正方形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键15、1.016×105【解析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1|a|10,n表示整数n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂,【详解】解:101 600=1.016×105故答案为:1.016×105【点睛】本题考查科学计数法,掌握概念正确表示是本题的解题关键.16、(a+b)2=a2+2ab+b2【解析】完全平方公式的几何背景,即乘法公式的几何验证此类题型可从整体和部分两个方面分析问题本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.【详解】解:, 【点睛】此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键.三、解答题(共8题,共72分)17、(1)见解析;(2)见解析【解析】(1)从所给的条件可知,DE是ABC中位线,所以DEBC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形(2)因为BCF=120°,所以EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可【详解】解:(1)证明:D、E分别是AB、AC的中点,DEBC且2DE=BC又BE=2DE,EF=BE,EF=BC,EFBC四边形BCFE是平行四边形又BE=FE,四边形BCFE是菱形(2)BCF=120°,EBC=60°EBC是等边三角形菱形的边长为4,高为菱形的面积为4×=18、(1);(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】试题分析:(1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;(2)用列表法列举出所有的情况和两张卡片上的数都是勾股数的情况即可.试题解析:(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;(2)列表法:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,P2=,P1=,P2=,P1P2淇淇与嘉嘉抽到勾股数的可能性不一样19、(1);(2);(3)(1,3);(7,3);(4,7);(4,1),对应的抛物线分别为 ; ;,偶数.【解析】(1)设正方形ABCD的边长为a,当点A在x轴负半轴、点B在y轴正半轴上时,可知3a=,求出a,(2)作DE、CF分别垂直于x、y轴,可知ADEBAOCBF,列出m的等式解出m,(3)本问的抛物线解析式不止一个,求出其中一个【详解】解:(1)正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形当点A在x轴正半轴、点B在y轴负半轴上时,AO=1,BO=1,正方形ABCD的边长为 ,当点A在x轴负半轴、点B在y轴正半轴上时,设正方形的边长为a,得3a=, ,所以伴侣正方形的边长为或;(2)作DE、CF分别垂直于x、y轴,知ADEBAOCBF,此时,m2,DE=OA=BF=mOB=CF=AE=2mOF=BF+OB=2C点坐标为(2m,2),2m=2(2m)解得m=1,反比例函数的解析式为y= ,(3)根据题意画出图形,如图所示:过C作CFx轴,垂足为F,过D作DECF,垂足为E,CEDDGBAOBAFC,C(3,4),即CF=4,OF=3,EG=3,DE=4,故DG=DEGE=DEOF=43=1,则D坐标为(1,3);设过D与C的抛物线的解析式为:y=ax2+b,把D和C的坐标代入得: ,解得 ,满足题意的抛物线的解析式为y=x2+ ;同理可得D的坐标可以为:(7,3);(4,7);(4,1),;对应的抛物线分别为 ; ;,所求的任何抛物线的伴侣正方形个数为偶数.【点睛】本题考查了二次函数的综合题.灵活运用相关知识是解题关键.20、 【解析】分析:化简绝对值、0次幂和负指数幂,代入30°角的三角函数值,然后按照有理数的运算顺序和法则进行计算即可详解:原式=+12×+=点睛:本题考查了实数的运算,用到的知识点主要有绝对值、零指数幂和负指数幂,以及特殊角的三角函数值,熟记相关法则和性质是解决此题的关键21、(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.【解析】分析:(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得详解:(1)本次接受调查的市民人数为300÷15%=2000人,(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人)点睛:本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小22、每件衬衫应降价1元.【解析】利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得 (40-x)(1+2x)=110,整理,得x2-30x+10=0,解得x1=10,x2=1“扩大销售量,减少库存”,x1=10应舍去,x=1.答:每件衬衫应降价1元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.23、(1)该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套;(2)A种品牌的教学设备购进数量至多减少1套 【解析】(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,根据花11万元购进两种设备销售后可获得利润12万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,根据总价=单价×数量结合用于购进这两种教学设备的总资金不超过18万元,即可得出关于m的一元一次不等式,解之取其中最大的整数即可得出结论【详解】解:(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,根据题意得:解得:答:该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,根据题意得:1.5(20m)+1.2(30+1.5m)18,解得:m,m为整数,m1答:A种品牌的教学设备购进数量至多减少1套【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式24、(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人【解析】(1)根据D组人数以及百分比计算即可(2)根据圆心角度数360°×百分比计算即可(3)求出A,C两组人数画出条形图即可(4)利用样本估计总体的思想解决问题即可【详解】(1)本次接受调查的市民共有:50÷25%1(人),故答案为1(2)扇形统计图中,扇形B的圆心角度数360°×43.2°;故答案为:43.2°(3)C组人数1×40%80(人),A组人数12480501630(人)条形统计图如图所示:(4)15×40%6(万人)答:估计乘公交车上班的人数为6万人【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型