云南省南涧彝族自治县市级名校2022-2023学年中考数学模试卷含解析.doc
-
资源ID:87837556
资源大小:575KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
云南省南涧彝族自治县市级名校2022-2023学年中考数学模试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果CDE=40°,那么BAF的大小为()A10°B15°C20°D25°2对于不等式组,下列说法正确的是()A此不等式组的正整数解为1,2,3B此不等式组的解集为C此不等式组有5个整数解D此不等式组无解3如图,在ABC中,EFBC,S四边形BCFE=8,则SABC=( )A9B10C12D134现有三张背面完全相同的卡片,正面分别标有数字1,2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是()ABCD5如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )A B C D6半径为的正六边形的边心距和面积分别是()A,B,C,D,7如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A10 cm3以上,20 cm3以下B20 cm3以上,30 cm3以下C30 cm3以上,40 cm3以下D40 cm3以上,50 cm3以下8如果,那么代数式的值为( )A1B2C3D49已知反比例函数,下列结论不正确的是()A图象经过点(2,1)B图象在第二、四象限C当x0时,y随着x的增大而增大D当x1时,y210我国古代数学著作孙子算经中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( )ABCD二、填空题(共7小题,每小题3分,满分21分)11若,则_12如图,AB是O的直径,点E是的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若C30°,O的半径是2,则图形中阴影部分的面积是_13不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是_14如图,AB为0的弦,AB=6,点C是0上的一个动点,且ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是_ 15(题文)如图1,点P从ABC的顶点B出发,沿BCA匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则ABC的面积是_16若实数a、b、c在数轴上对应点的位置如图,则化简:2|a+c|+3|ab|=_17已知O的面积为9cm2,若点O到直线L的距离为cm,则直线l与O的位置关系是_三、解答题(共7小题,满分69分)18(10分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长19(5分)如图,在ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF(1)求证:四边形BCFE是菱形;(2)若CE=4,BCF=120°,求菱形BCFE的面积20(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x/(元/千克)506070销售量y/千克1008060 (1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润收入成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?21(10分)先化简,再求值:,其中a是方程a(a+1)0的解22(10分)某校为了开阔学生的视野,积极组织学生参加课外读书活动“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?23(12分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0x20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?24(14分)如图,抛物线(a0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G求抛物线的解析式;抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似?若存在,求出此时m的值,并直接判断PCM的形状;若不存在,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】先根据CDE=40°,得出CED=50°,再根据DEAF,即可得到CAF=50°,最后根据BAC=60°,即可得出BAF的大小【详解】由图可得,CDE=40° ,C=90°,CED=50°,又DEAF,CAF=50°,BAC=60°,BAF=60°50°=10°,故选A.【点睛】本题考查了平行线的性质,熟练掌握这一点是解题的关键.2、A【解析】解:,解得x,解得x1,所以不等式组的解集为1x,所以不等式组的整数解为1,2,1故选A点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解)解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解3、A【解析】由在ABC中,EFBC,即可判定AEFABC,然后由相似三角形面积比等于相似比的平方,即可求得答案【详解】,又EFBC,AEFABC1SAEF=SABC又S四边形BCFE=8,1(SABC8)=SABC,解得:SABC=1故选A4、D【解析】先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.【详解】任取两张卡片,数字之和一共有3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是.故选D.【点睛】本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.5、A【解析】由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.6、A【解析】首先根据题意画出图形,易得OBC是等边三角形,继而可得正六边形的边长为R,然后利用解直角三角形求得边心距,又由S正六边形=求得正六边形的面积【详解】解:如图,O为正六边形外接圆的圆心,连接OB,OC,过点O作OHBC于H,六边形ABCDEF是正六边形,半径为,BOC=,OB=OC=R,OBC是等边三角形,BC=OB=OC=R,OHBC,在中,即,即边心距为;,S正六边形=,故选:A【点睛】本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键7、C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可详解:设玻璃球的体积为x,则有解得30x1故一颗玻璃球的体积在30cm3以上,1cm3以下故选C点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围8、A【解析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y代入即可得【详解】解:原式= = 3x-4y=0,3x=4y原式=1故选:A【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则9、D【解析】A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;B选项:因为-20,图象在第二、四象限,故本选项正确;C选项:当x0,且k0,y随x的增大而增大,故本选项正确;D选项:当x0时,y0,故本选项错误故选D10、B【解析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.二、填空题(共7小题,每小题3分,满分21分)11、【解析】=.12、【解析】首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DE,AD的长,利用SADES扇形FOE图中阴影部分的面积求出即可【详解】解:连接OE,OF、EF,DE是切线,OEDE,C30°,OBOE2,EOC60°,OC2OE4,CEOC×sin60°= 点E是弧BF的中点,EABDAE30°,F,E是半圆弧的三等分点,EOFEOBAOF60°,OEAD,DAC60°,ADC90°,CEAE DE,ADDE×tan60°= SADE FOE和AEF同底等高,FOE和AEF面积相等,图中阴影部分的面积为:SADES扇形FOE故答案为【点睛】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出FOE和AEF面积相等是解题关键13、【解析】先求出球的总数,再根据概率公式求解即可【详解】不透明的袋子里装有2个白球,1个红球,球的总数=2+1=3,从袋子中随机摸出1个球,则摸出白球的概率=故答案为【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键14、3【解析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值【详解】解:因为点M、N分别是AB、BC的中点,由三角形的中位线可知:MN=AC,所以当AC最大为直径时,MN最大这时B=90°又因为ACB=45°,AB=6 解得AC=6MN长的最大值是3故答案为:3【点睛】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大15、12【解析】根据题意观察图象可得BC=5,点P在AC上运动时,BPAC时,BP有最小值,观察图象可得,BP的最小值为4,即BPAC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.16、5a+4b3c【解析】直接利用数轴结合二次根式、绝对值的性质化简得出答案【详解】由数轴可得:a+c0,b-c0,a-b0,故原式=-2(a+c)+b-c-3(a-b)=-2a-2c+b-c-3a+3b=-5a+4b-3c故答案为-5a+4b-3c【点睛】此题主要考查了二次根式以及绝对值的性质,正确化简是解题关键17、相离【解析】设圆O的半径是r,根据圆的面积公式求出半径,再和点0到直线l的距离比较即可【详解】设圆O的半径是r,则r2=9,r=3,点0到直线l的距离为,3,即:rd,直线l与O的位置关系是相离,故答案为:相离.【点睛】本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当rd时相离;当r=d时相切;当rd时相交三、解答题(共7小题,满分69分)18、(1)ab4x1(1)【解析】(1)边长为x的正方形面积为x1,矩形面积减去4个小正方形的面积即可(1)依据剪去部分的面积等于剩余部分的面积,列方程求出x的值即可【详解】解:(1)ab4x1(1)依题意有:,将a=6,b=4,代入上式,得x1=2解得x1=,x1=(舍去)正方形的边长为19、(1)见解析;(2)见解析【解析】(1)从所给的条件可知,DE是ABC中位线,所以DEBC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形(2)因为BCF=120°,所以EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可【详解】解:(1)证明:D、E分别是AB、AC的中点,DEBC且2DE=BC又BE=2DE,EF=BE,EF=BC,EFBC四边形BCFE是平行四边形又BE=FE,四边形BCFE是菱形(2)BCF=120°,EBC=60°EBC是等边三角形菱形的边长为4,高为菱形的面积为4×=20、 (1)y2x200 (2)W2x2280x8 000(3)售价为70元时,获得最大利润,这时最大利润为1 800元【解析】(1)用待定系数法求一次函数的表达式;(2)利用利润的定义,求与之间的函数表达式;(3)利用二次函数的性质求极值.【详解】解:(1)设,由题意,得,解得,所求函数表达式为.(2).(3),其中,当时,随的增大而增大,当时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.考点: 二次函数的实际应用.21、【解析】根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解.【详解】解:原式=a(a+1)=0,解得:a=0或-1,由题可知分式有意义,分母不等于0,a=-1,将a=-1代入得,原式=【点睛】本题考查了分式的化简求值,中等难度,根据分式有意义的条件代值计算是解题关键.22、(4)60;(4)作图见试题解析;(4)4【解析】试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数试题解析:(4)被调查的学生人数为:44÷40%=60(人);(4)喜欢艺体类的学生数为:60-44-44-46=8(人),如图所示:全校最喜爱文学类图书的学生约有:4400×=4(人)考点:4条形统计图;4用样本估计总体;4扇形统计图23、 (1)y10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元【解析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润总利润列出方程求解即可;(3)根据销售量×每千克利润总利润列出函数解析式求解即可【详解】(1)设y与x之间的函数关系式为:ykx+b,把(2,120)和(4,140)代入得,解得:,y与x之间的函数关系式为:y10x+100;(2)根据题意得,(6040x)(10x+100)2090,解得:x1或x9,为了让顾客得到更大的实惠,x9,答:这种干果每千克应降价9元;(3)该干果每千克降价x元,商贸公司获得利润是w元,根据题意得,w(6040x)(10x+100)10x2+100x+2000,w10(x5)2+2250,a=-10,当x5时,故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识24、(1)抛物线的解析式为;(2)PM=(0m3);(3)存在这样的点P使PFC与AEM相似此时m的值为或1,PCM为直角三角形或等腰三角形【解析】(1)将A(3,0),C(0,4)代入,运用待定系数法即可求出抛物线的解析式(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,从而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长(3)由于PFC和AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和AEM相似时,分两种情况进行讨论:PFCAEM,CFPAEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出PCM的形状【详解】解:(1)抛物线(a0)经过点A(3,0),点C(0,4),解得抛物线的解析式为(2)设直线AC的解析式为y=kx+b,A(3,0),点C(0,4),解得直线AC的解析式为点M的横坐标为m,点M在AC上,M点的坐标为(m,)点P的横坐标为m,点P在抛物线上,点P的坐标为(m,)PM=PEME=()()=PM=(0m3)(3)在(2)的条件下,连接PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似理由如下:由题意,可得AE=3m,EM=,CF=m,PF=,若以P、C、F为顶点的三角形和AEM相似,分两种情况:若PFCAEM,则PF:AE=FC:EM,即():(3m)=m:(),m0且m3,m=PFCAEM,PCF=AMEAME=CMF,PCF=CMF在直角CMF中,CMF+MCF=90°,PCF+MCF=90°,即PCM=90°PCM为直角三角形若CFPAEM,则CF:AE=PF:EM,即m:(3m)=():(),m0且m3,m=1CFPAEM,CPF=AMEAME=CMF,CPF=CMFCP=CMPCM为等腰三角形综上所述,存在这样的点P使PFC与AEM相似此时m的值为或1,PCM为直角三角形或等腰三角形