上海市金山区名校2023年中考冲刺卷数学试题含解析.doc
-
资源ID:87837878
资源大小:730KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
上海市金山区名校2023年中考冲刺卷数学试题含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1若 | =,则一定是( )A非正数B正数C非负数D负数22016的相反数是( )ABCD3要使分式有意义,则x的取值范围是( )Ax=Bx>Cx<Dx4我国古代数学著作孙子算经中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( )ABCD5如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A B C D6某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是( )ABCD7如图,直线ab,点A在直线b上,BAC=100°,BAC的两边与直线a分别交于B、C两点,若2=32°,则1的大小为()A32°B42°C46°D48°8我国古代数学著作九章算术中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为()A16+16B16+8C24+16D4+49如图,则的大小是ABCD10(2011雅安)点P关于x轴对称点为P1(3,4),则点P的坐标为( )A(3,4) B(3,4)C(4,3) D(3,4)二、填空题(本大题共6个小题,每小题3分,共18分)11如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C若点A的坐标为(,4),则AOC的面积为 12某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移a,b=m - i,n - j,并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,mn的最大值为_.13因式分解:_.14抛物线yx22x+m与x轴只有一个交点,则m的值为_15将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为_16如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C恰好落在直线AB上,则点C的坐标为 三、解答题(共8题,共72分)17(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度(测角仪高度忽略不计)18(8分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图ABC笔试859590口试 8085(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为 度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为 ;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选(从A、B、C、选择一个填空)19(8分)如图,已知点A,B,C在半径为4的O上,过点C作O的切线交OA的延长线于点D()若ABC=29°,求D的大小;()若D=30°,BAO=15°,作CEAB于点E,求:BE的长;四边形ABCD的面积20(8分)解方程:-=121(8分)已知抛物线y=a(x+3)(x1)(a0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=x+b与抛物线的另一个交点为D(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?22(10分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)这组数据的中位数是 ,众数是 ;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?23(12分)如图,正方形ABCD中,BD为对角线(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若AB=4,求DEF的周长24某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图根据以上信息,解答下列问题:(1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据绝对值的性质进行求解即可得.【详解】|-x|=-x,又|-x|1,-x1,即x1,即x是非正数,故选A【点睛】本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是12、C【解析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.故选C.3、D【解析】本题主要考查分式有意义的条件:分母不能为0,即3x70,解得x【详解】3x70,x故选D【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义4、B【解析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.5、A【解析】试题分析:主视图是从正面看到的图形,只有选项A符合要求,故选A考点:简单几何体的三视图6、A【解析】分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程详解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:.故选A.点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.7、D【解析】根据平行线的性质与对顶角的性质求解即可.【详解】ab,BCA=2,BAC=100°,2=32°CBA=180°-BAC-BCA=180°-100°-32°=48°.1=CBA=48°.故答案选D.【点睛】本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.8、A【解析】分析出此三棱柱的立体图像即可得出答案.【详解】由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=×4=,所以侧面积之和为×2+4×4= 16+16,所以答案选择A项.【点睛】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.9、D【解析】依据,即可得到,再根据,即可得到【详解】解:如图,又,故选:D【点睛】本题主要考查了平行线的性质,两直线平行,同位角相等10、A【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,点P的坐标为(3,4)故选A二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】解:OA的中点是D,点A的坐标为(6,4),D(1,2),双曲线y=经过点D,k=1×2=6,BOC的面积=|k|=1又AOB的面积=×6×4=12,AOC的面积=AOB的面积BOC的面积=121=212、36【解析】10=a+b=(m-i)+(n-j)=(m+n)-(i+j)所以:m+n=10+i+j当(m+n)取最小值时,(i+j)也必须最小,所以i和j都是2,这样才能(i+j)才能最小,因此:m+n=10+2=12也就是:当m+n=12时,m·n最大是多少?这就容易了:m·n<=36所以m·n的最大值就是3613、n(m+2)(m2)【解析】先提取公因式 n,再利用平方差公式分解即可【详解】m2n4n=n(m24)=n(m+2)(m2).故答案为n(m+2)(m2)【点睛】本题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键14、1【解析】由抛物线y=x2-2x+m与x轴只有一个交点可知,对应的一元二次方程x2-2x+m=2,根的判别式=b2-4ac=2,由此即可得到关于m的方程,解方程即可求得m的值【详解】解:抛物线y=x22x+m与x轴只有一个交点,=2,b24ac=224×1×m=2;m=1故答案为1【点睛】本题考查了抛物线与x轴的交点问题,注:抛物线与x轴有两个交点,则2;抛物线与x轴无交点,则2;抛物线与x轴有一个交点,则=215、【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长则所得到的侧面展开图形面积.考点:勾股定理,圆锥的侧面积公式点评:解题的关键是熟记圆锥的侧面积公式:圆锥的侧面积底面半径母线.16、(2,2)【解析】试题分析:直线y=2x+4与y轴交于B点,x=0时,得y=4,B(0,4)以OB为边在y轴右侧作等边三角形OBC,C在线段OB的垂直平分线上,C点纵坐标为2将y=2代入y=2x+4,得2=2x+4,解得x=2所以C的坐标为(2,2)考点:2一次函数图象上点的坐标特征;2等边三角形的性质;3坐标与图形变化-平移三、解答题(共8题,共72分)17、30米【解析】设ADxm,在RtACD中,根据正切的概念用x表示出CD,在RtABD中,根据正切的概念列出方程求出x的值即可【详解】由题意得,ABD30°,ACD45°,BC60m,设ADxm,在RtACD中,tanACD,CDADx,BDBC+CDx+60,在RtABD中,tanABD,米,答:山高AD为30米【点睛】本题考查的是解直角三角形的应用仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键18、(1)90;(2)144度;(3)105,120,75;(4)B【解析】(1)由条形图可得A演讲得分,由表格可得C笔试得分,据此补全图形即可;(2)用360°乘以B对应的百分比可得答案;(3)用总人数乘以A、B、C三人对应的百分比可得答案;(4)根据加权平均数的定义计算可得【详解】解:(1)由条形图知,A演讲得分为90分,补全图形如下:故答案为90;(2)扇图中B同学对应的扇形圆心角为360°×40%144°,故答案为144;(3)A同学得票数为300×35%105,B同学得票数为300×40%120,C同学得票数为300×25%75,故答案为105、120、75;(4)A的最终得分为92.5(分),B的最终得分为98(分),C的最终得分为84(分),B最终当选,故答案为B【点睛】本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据19、(1)D=32°;(2)BE;【解析】()连接OC, CD为切线,根据切线的性质可得OCD=90°,根据圆周角定理可得AOC=2ABC=29°×2=58°,根据直角三角形的性质可得D的大小.()根据D=30°,得到DOC=60°,根据BAO=15°,可以得出AOB=150°,进而证明OBC为等腰直角三角形,根据等腰直角三角形的性质得出根据圆周角定理得出根据含角的直角三角形的性质即可求出BE的长;根据四边形ABCD的面积=SOBC+SOCDSOAB进行计算即可.【详解】()连接OC,CD为切线,OCCD,OCD=90°,AOC=2ABC=29°×2=58°,D=90°58°=32°;()连接OB,在RtOCD中,D=30°,DOC=60°, BAO=15°,OBA=15°,AOB=150°,OBC=150°60°=90°,OBC为等腰直角三角形, 在RtCBE中, 作BHOA于H,如图,BOH=180°AOB=30°, 四边形ABCD的面积=SOBC+SOCDSOAB 【点睛】考查切线的性质,圆周角定理,等腰直角三角形的判定与性质,含角的等腰直角三角形的性质,三角形的面积公式等,题目比较典型,综合性比较强,难度适中20、【解析】【分析】先去分母,把分式方程化为一元一次方程,解一元一次方程,再验根.【详解】解:去分母得:解得: 检验:把代入 所以:方程的解为【点睛】本题考核知识点:解方式方程. 解题关键点:去分母,得到一元一次方程,.验根是要点.21、(1)y=(x+3)(x1)=x22x+3;(2)(4,)和(6,3)(3)(1,4)【解析】试题分析:(1)根据二次函数的交点式确定点A、B的坐标,求出直线的解析式,求出点D的坐标,求出抛物线的解析式;(2)作PHx轴于H,设点P的坐标为(m,n),分BPAABC和PBAABC,根据相似三角形的性质计算即可;(3)作DMx轴交抛物线于M,作DNx轴于N,作EFDM于F,根据正切的定义求出Q的运动时间t=BE+EF时,t最小即可试题解析:(1)y=a(x+3)(x1),点A的坐标为(3,0)、点B两的坐标为(1,0),直线y=x+b经过点A,b=3,y=x3,当x=2时,y=5,则点D的坐标为(2,5),点D在抛物线上,a(2+3)(21)=5,解得,a=,则抛物线的解析式为y=(x+3)(x1)=x22x+3;(2)作PHx轴于H,设点P的坐标为(m,n),当BPAABC时,BAC=PBA,tanBAC=tanPBA,即=,=,即n=a(m1),解得,m1=4,m2=1(不合题意,舍去),当m=4时,n=5a,BPAABC,=,即AB2=ACPB,42=,解得,a1=(不合题意,舍去),a2=,则n=5a=,点P的坐标为(4,);当PBAABC时,CBA=PBA,tanCBA=tanPBA,即=,=,即n=3a(m1),解得,m1=6,m2=1(不合题意,舍去),当m=6时,n=21a,PBAABC,=,即AB2=BCPB,42=,解得,a1=(不合题意,舍去),a2=,则点P的坐标为(6,),综上所述,符合条件的点P的坐标为(4,)和(6,);(3)作DMx轴交抛物线于M,作DNx轴于N,作EFDM于F,则tanDAN=,DAN=60°,EDF=60°,DE=EF,Q的运动时间t=+=BE+EF,当BE和EF共线时,t最小,则BEDM,E(1,4)考点:二次函数综合题.22、 (1) 7、7和8;(2)见解析;(3)第一次调查时,平均每天的非机动车逆向行驶的次数3次【解析】(1)将数据按照从下到大的顺序重新排列,再根据中位数和众数的定义解答可得;(2)根据折线图确定逆向行驶7次的天数,从而补全直方图;(3)利用加权平均数公式求得违章的平均次数,从而求解【详解】解:(1)被抽查的数据重新排列为:5、5、6、7、7、7、8、8、8、9,中位数为=7,众数是7和8,故答案为:7、7和8;(2)补全图形如下:(3)第一次调查时,平均每天的非机动车逆向行驶的次数为=7(次),第一次调查时,平均每天的非机动车逆向行驶的次数3次【点睛】本题考查的是条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据23、(1)见解析;(2)2+1【解析】分析:(1)、根据中垂线的做法作出图形,得出答案;(2)、根据中垂线和正方形的性质得出DF、DE和EF的长度,从而得出答案详解:(1)如图,EF为所作;(2)解:四边形ABCD是正方形,BDC=15°,CD=BC=1,又EF垂直平分CD,DEF=90°,EDF=EFD=15°, DE=EF=CD=2,DF=DE=2,DEF的周长=DF+DE+EF=2+1点睛:本题主要考查的是中垂线的性质,属于基础题型理解中垂线的性质是解题的关键24、(1)120,30%;(2)作图见解析;(3)1【解析】试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、 “一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.试题解析:(1) 12÷15%=120人;36÷120=30%;(2)120×45%=54人,补全统计图如下:(3)1800×=1人.考点:条形统计图;扇形统计图;用样本估计总体.