上海市长宁区高级中学2023届中考数学考前最后一卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在同一直角坐标系中,二次函数y=x2与反比例函数y=(x0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令=x1+x2+x3,则的值为()A1 Bm Cm2 D2随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )ABCD3若正六边形的边长为6,则其外接圆半径为( )A3B3C3D64某反比例函数的图象经过点(-2,3),则此函数图象也经过( )A(2,-3)B(-3,3)C(2,3)D(-4,6)5某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()A4.5cm2B3cm2C4cm2D3cm26的负倒数是()AB-C3D37下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )ABCD8在RtABC中,C90°,AB4,AC1,则cosB的值为()ABCD9不等式组的解集表示在数轴上正确的是()ABCD10下面的图形中,既是轴对称图形又是中心对称图形的是( ) A B C D二、填空题(共7小题,每小题3分,满分21分)11用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为_12已知正方形ABCD,AB1,分别以点A、C为圆心画圆,如果点B在圆A外,且圆A与圆C外切,那么圆C的半径长r的取值范围是_13将一个含45°角的三角板,如图摆放在平面直角坐标系中,将其绕点顺时针旋转75°,点的对应点恰好落在轴上,若点的坐标为,则点的坐标为_14计算a10÷a5=_15如图,ABC中,AB=AC,以AC为斜边作RtADC,使ADC=90°,CAD=CAB=26°,E、F分别是BC、AC的中点,则EDF等于_°16计算:(3+1)(31)= 17如图,长方体的底面边长分别为1cm 和3cm,高为6cm如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_cm三、解答题(共7小题,满分69分)18(10分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°,cos53°,tan53°)19(5分)如图,在中,,于, .求的长;.求 的长. 20(8分)如图1,在直角梯形ABCD中,ABBC,ADBC,点P为DC上一点,且APAB,过点C作CEBP交直线BP于E.(1) 若,求证:;(2) 若ABBC 如图2,当点P与E重合时,求的值; 如图3,设DAP的平分线AF交直线BP于F,当CE1,时,直接写出线段AF的长.21(10分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1点P是AC上的一个动点,过点P作MNAC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上)设AP的长为x(0x4),AMN的面积为y建立模型:(1)y与x的函数关系式为:,解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象请你补充列表,并在如图的坐标系中画出此函数的图象:x01134y0 0(3)观察所画的图象,写出该函数的两条性质: 22(10分)如图,B、E、C、F在同一直线上,ABDE,BECF,BDEF,求证:ACDF23(12分)如图,矩形ABCD为台球桌面,AD260cm,AB130cm,球目前在E点位置,AE60cm如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置求BF的长24(14分)如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD,等边ABE,已知BAC=30°,EFAB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】本题主要考察二次函数与反比例函数的图像和性质.【详解】令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到=+()+=.所以本题选择D.【点睛】巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.2、D【解析】分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可详解:设乘公交车平均每小时走x千米,根据题意可列方程为:故选D点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可3、D【解析】连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径【详解】如图为正六边形的外接圆,ABCDEF是正六边形,AOF=10°, OA=OF, AOF是等边三角形,OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1故选D【点睛】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.4、A【解析】设反比例函数y=(k为常数,k0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断【详解】设反比例函数y=(k为常数,k0),反比例函数的图象经过点(-2,3),k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,点(2,-3)在反比例函数y=- 的图象上故选A【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k5、A【解析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可【详解】圆锥的轴截面是一个边长为3cm的等边三角形,底面半径1.5cm,底面周长3cm,圆锥的侧面积×3×34.5cm2,故选A【点睛】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出6、D【解析】根据倒数的定义,互为倒数的两数乘积为1,2×=1再求出2的相反数即可解答【详解】根据倒数的定义得:2×=1因此的负倒数是-2故选D【点睛】本题考查了倒数,解题的关键是掌握倒数的概念.7、C【解析】A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C8、A【解析】在RtABC中,C=90°,AB=4,AC=1,BC= ,则cosB= ,故选A9、C【解析】根据题意先解出的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C的表示符合这些条件.故应选C.10、B【解析】试题解析:A. 是轴对称图形但不是中心对称图形B.既是轴对称图形又是中心对称图形;C.是中心对称图形,但不是轴对称图形;D.是轴对称图形不是中心对称图形;故选B.二、填空题(共7小题,每小题3分,满分21分)11、【解析】试题分析:,解得r=考点:弧长的计算12、1r【解析】首先根据题意求得对角线AC的长,设圆A的半径为R,根据点B在圆A外,得出0R1,则-1-R0,再根据圆A与圆C外切可得R+r=,利用不等式的性质即可求出r的取值范围【详解】正方形ABCD中,AB=1,AC=,设圆A的半径为R,点B在圆A外,0R1,-1-R0,-1-R以A、C为圆心的两圆外切,两圆的半径的和为,R+r=,r=-R,-1r故答案为:-1r【点睛】本题考查了圆与圆的位置关系,点与圆的位置关系,正方形的性质,勾股定理,不等式的性质掌握位置关系与数量之间的关系是解题的关键13、【解析】先求得ACO=60°,得出OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角边为,从而求出B的坐标【详解】解:ACB=45°,BCB=75°,ACB=120°,ACO=60°,OAC=30°,AC=2OC,点C的坐标为(1,0),OC=1,AC=2OC=2,ABC是等腰直角三角形,B点的坐标为【点睛】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题14、a1【解析】试题分析:根据同底数幂的除法底数不变指数相减,可得答案原式=a10-1=a1,故答案为a1考点:同底数幂的除法15、【解析】 E、F分别是BC、AC的中点. , CAB=26° 又 CAD =26° !16、1【解析】根据平方差公式计算即可【详解】原式=(3)2-12=18-1=1故答案为1【点睛】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键17、1【解析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果【详解】解:将长方体展开,连接A、B,AA=1+3+1+3=8(cm),AB=6cm,根据两点之间线段最短,AB=1cm故答案为1考点:平面展开-最短路径问题三、解答题(共7小题,满分69分)18、(20-5)千米. 【解析】分析:作BDAC,设AD=x,在RtABD中求得BD=x,在RtBCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案详解:过点B作BD AC,依题可得:BAD=60°,CBE=37°,AC=13(千米),BDAC,ABD=30°,CBD=53°,在RtABD中,设AD=x,tanABD= 即tan30°=,BD=x,在RtDCB中,tanCBD= 即tan53°=,CD= CD+AD=AC,x+=13,解得,x= BD=12-,在RtBDC中,cosCBD=tan60°=,即:BC=(千米),故B、C两地的距离为(20-5)千米. 点睛:此题考查了方向角问题此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解19、(1)25(2)12【解析】整体分析:(1)用勾股定理求斜边AB的长;(2)用三角形的面积等于底乘以高的一半求解.解:(1).在中,.,(2).,即,20×1525CD.20、(1)证明见解析;(2);3.【解析】(1) 过点A作AFBP于F,根据等腰三角形的性质得到BF=BP,易证RtABFRtBCE,根据相似三角形的性质得到,即可证明BP=CE.(2) 延长BP、AD交于点F,过点A作AGBP于G,证明ABGBCP,根据全等三角形的性质得BGCP,设BG1,则PGPC1,BCAB,在RtABF中,由射影定理知,AB2BG·BF5,即可求出BF5,PF5113,即可求出的值; 延长BF、AD交于点G,过点A作AHBE于H,证明ABHBCE,根据全等三角形的性质得BGCP,设BHBPCE1,又,得到PG,BG,根据射影定理得到AB2BH·BG ,即可求出AB ,根据勾股定理得到,根据等腰直角三角形的性质得到.【详解】解:(1) 过点A作AFBP于FAB=APBF=BP,RtABFRtBCEBP=CE. (2) 延长BP、AD交于点F,过点A作AGBP于GABBC ABGBCP(AAS) BGCP设BG1,则PGPC1 BCAB在RtABF中,由射影定理知,AB2BG·BF5BF5,PF5113 延长BF、AD交于点G,过点A作AHBE于HABBC ABHBCE(AAS)设BHBPCE1 PG,BGAB2BH·BG AB AF平分PAD,AH平分BAPFAHBAD45°AFH为等腰直角三角形 【点睛】考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.21、 (1) y=;(1)见解析;(3)见解析【解析】(1)根据线段相似的关系得出函数关系式(1)代入中函数表达式即可填表(3)画图像,分析即可.【详解】(1)设AP=x当0x1时MNBDAPMAODMP=AC垂直平分MNPN=PM=xMN=xy=APMN=当1x4时,P在线段OC上,CP=4xCPMCODPM=MN=1PM=4xy=y=(1)由(1)当x=1时,y=当x=1时,y=1当x=3时,y=(3)根据(1)画出函数图象示意图可知1、当0x1时,y随x的增大而增大1、当1x4时,y随x的增大而减小【点睛】本题考查函数,解题的关键是数形结合思想.22、见解析【解析】由BECF可得BCEF,即可判定,再利用全等三角形的性质证明即可【详解】BECF,即BCEF,又ABDE,BDEF,在与中,ACDF【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.23、BF的长度是1cm【解析】利用“两角法”证得BEFCDF,利用相似三角形的对应边成比例来求线段CF的长度【详解】解:如图,在矩形ABCD中:DFCEFB,EBFFCD90°,BEFCDF;,又ADBC260cm ,ABCD130cm ,AE60cmBE70cm, CD130cm,BC260cm ,CF(260BF)cm,解得:BF1即:BF的长度是1cm【点睛】本题主要考查相似三角形的判定和性质,关键要掌握:有两角对应相等的两三角形相似;两三角形相似,对应边的比相等24、证明见解析【解析】(1)一方面RtABC中,由BAC=30°可以得到AB=2BC,另一方面ABE是等边三角形,EFAB,由此得到AE=2AF,并且AB=2AF,从而可证明AFEBCA,再根据全等三角形的性质即可证明AC=EF(2)根据(1)知道EF=AC,而ACD是等边三角形,所以EF=AC=AD,并且ADAB,而EFAB,由此得到EFAD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形【详解】证明:(1)RtABC中,BAC=30°,AB=2BC又ABE是等边三角形,EFAB,AB=2AFAF=BC在RtAFE和RtBCA中,AF=BC,AE=BA,AFEBCA(HL)AC=EF(2)ACD是等边三角形,DAC=60°,AC=ADDAB=DAC+BAC=90°EFADAC=EF,AC=AD,EF=AD四边形ADFE是平行四边形考点:1全等三角形的判定与性质;2等边三角形的性质;3平行四边形的判定