上海市黄埔区2023年中考数学模拟精编试卷含解析.doc
-
资源ID:87837953
资源大小:1.22MB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
上海市黄埔区2023年中考数学模拟精编试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,将函数y(x2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()Ay(x2)2-2By(x2)2+7Cy(x2)2-5Dy(x2)2+42若关于x的一元二次方程(k1)x2+2x2=0有两个不相等的实数根,则k的取值范围是()AkBkCk且k1Dk且k13若,则( )ABCD4下列二次根式中,为最简二次根式的是()ABCD5如图,在矩形ABCD中,AB5,AD3,动点P满足SPABS矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()ABC5D6一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:abc<0;b2>4ac;4a+2b+c<0;2a+b=0.其中正确的结论有:A4个B3个C2个D1个7如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心,则折痕的长度为( )AB2CD8下列长度的三条线段能组成三角形的是A2,3,5B7,4,2C3,4,8D3,3,49如图,在ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()A2B3C4D610据国家统计局2018年1月18日公布,2017年我国GDP总量为827122亿元,首次登上80万亿元的门槛,数据827122亿元用科学记数法表示为( )A8.27122×1012B8.27122×1013C0.827122×1014D8.27122×101411在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )ABCD12已知关于x的方程x2+3x+a=0有一个根为2,则另一个根为()A5B1C2D5二、填空题:(本大题共6个小题,每小题4分,共24分)13计算a3÷a2a的结果等于_14已知函数是关于的二次函数,则_15如图,sinC,长度为2的线段ED在射线CF上滑动,点B在射线CA上,且BC=5,则BDE周长的最小值为_16因式分解: 17已知a1,a2,a3,a4,a5,则an_(n为正整数)18安全问题大于天,为加大宣传力度,提高学生的安全意识,乐陵某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:互相关心;互相提醒;不要相互嬉水;相互比潜水深度;选择水流湍急的水域;选择有人看护的游泳池小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离(参考数据:tan37°=cot53°0.755,cot37°=tan53°1.327,tan32°=cot58°0.625,cot32°=tan58°1.1)20(6分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:本次比赛参赛选手共有 人,扇形统计图中“69.579.5”这一组人数占总参赛人数的百分比为 ;赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.21(6分)如图,一次函数y=2x4的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标为1(1)求反比例函数的解析式;(2)点P是x轴上一动点,ABP的面积为8,求P点坐标22(8分)如图,在平行四边形ABCD中,ABBC利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);若BC=8,CD=5,则CE= 23(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?24(10分)如图,已知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B,直线l过A、B两点,点D为线段AB上一动点,过点D作轴于点C,交抛物线于点 E(1)求抛物线的解析式;(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由(3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由25(10分)如图,在O中,AB为直径,OCAB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED(1)求证:DE是O的切线;(2)若tanA=,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径26(12分)已知抛物线y=a(x-1)2+3(a0)与y轴交于点A(0,2),顶点为B,且对称轴l1与x轴交于点M(1)求a的值,并写出点B的坐标;(2)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C做DEx轴,分别交l1、l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.27(12分)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,ABBC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米)(参考数据:sin72°0.95,cos72°0.31,tan72°3.08)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】函数的图象过点A(1,m),B(4,n),m=,n=3,A(1,),B(4,3),过A作ACx轴,交BB的延长线于点C,则C(4,),AC=41=3,曲线段AB扫过的面积为9(图中的阴影部分),ACAA=3AA=9,AA=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,新图象的函数表达式是故选D2、C【解析】根据题意得k-10且=2²-4(k-1)×(-2)0,解得:k且k1故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a0)的根的判别式=b²-4ac,关键是熟练掌握:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根3、D【解析】等式左边为非负数,说明右边,由此可得b的取值范围【详解】解:,解得故选D【点睛】本题考查了二次根式的性质:,4、B【解析】最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).【详解】A. =3, 不是最简二次根式; B. ,最简二次根式; C. =,不是最简二次根式; D. =,不是最简二次根式.故选:B【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.5、D【解析】解:设ABP中AB边上的高是hSPAB=S矩形ABCD, ABh=ABAD,h=AD=2,动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE就是所求的最短距离在RtABE中,AB=5,AE=2+2=4,BE= =,即PA+PB的最小值为故选D6、B【解析】试题解析:二次函数的图象的开口向下,a<0,二次函数的图象y轴的交点在y轴的正半轴上,c>0,二次函数图象的对称轴是直线x=1, 2a+b=0,b>0abc<0,故正确;抛物线与x轴有两个交点, 故正确;二次函数图象的对称轴是直线x=1,抛物线上x=0时的点与当x=2时的点对称,即当x=2时,y>04a+2b+c>0,故错误;二次函数图象的对称轴是直线x=1,2a+b=0,故正确综上所述,正确的结论有3个.故选B.7、C【解析】过O作OCAB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长【详解】过O作OCAB,交圆O于点D,连接OA,由折叠得到CD=OC=OD=1cm,在RtAOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:AC=cm,则AB=2AC=2cm故选C【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键8、D【解析】试题解析:A3+2=5,2,3,5不能组成三角形,故A错误;B4+27,7,4,2不能组成三角形,故B错误;C4+38,3,4,8不能组成三角形,故C错误;D3+34,3,3,4能组成三角形,故D正确;故选D9、B【解析】根据三角形的中位线等于第三边的一半进行计算即可【详解】D、E分别是ABC边AB、AC的中点,DE是ABC的中位线,BC=6,DE=BC=1故选B【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用10、B【解析】由科学记数法的定义可得答案.【详解】解:827122亿即82712200000000,用科学记数法表示为8.27122×1013,故选B.【点睛】科学记数法表示数的标准形式为 (10且n为整数).11、A【解析】试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,综上所知这个几何体是圆柱故选A考点:由三视图判断几何体12、B【解析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决【详解】关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,-2+m=,解得,m=-1,故选B二、填空题:(本大题共6个小题,每小题4分,共24分)13、a1【解析】根据同底数幂的除法法则和同底数幂乘法法则进行计算即可【详解】解:原式=a31+1=a1故答案为a1【点睛】本题考查了同底数幂的乘除法,关键是掌握计算法则14、1【解析】根据一元二次方程的定义可得:,且,求解即可得出m的值【详解】解:由题意得:,且,解得:,且,故答案为:1【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”且“二次项的系数不等于0”15、【解析】作BKCF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时BD'E'的周长最小,作交CF于点F,可知四边形为平行四边形及四边形为矩形,在中,解直角三角形可知BH长,易得GK长,在RtBGK中,可得BG长,表示出BD'E'的周长等量代换可得其值.【详解】解:如图,作BKCF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时BD'E'的周长最小,作交CF于点F.由作图知,四边形为平行四边形,由对称可知 ,即四边形为矩形在中, 在RtBGK中, BK=2,GK=6,BG2,BDE周长的最小值为BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2故答案为:2+2【点睛】本题考查了最短距离问题,涉及了轴对称、矩形及平行四边形的性质、解直角三角形、勾股定理,难度系数较大,利用两点之间线段最短及轴对称添加辅助线是解题的关键.16、【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式因此,先提取公因式后继续应用平方差公式分解即可:17、.【解析】观察分母的变化为n的1次幂加1、2次幂加1、3次幂加1,n次幂加1;分子的变化为:3、5、7、92n+1【详解】解:a1=,a2=,a3=,a4=,a5=,an,故答案为:【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案18、【解析】根据事件的描述可得到描述正确的有,即可得到答案.【详解】共有6张纸条,其中正确的有互相关心;互相提醒;不要相互嬉水;选择有人看护的游泳池,共4张,抽到内容描述正确的纸条的概率是, 故答案为:【点睛】此题考查简单事件的概率的计算,正确掌握事件的概率计算公式是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、10【解析】试题分析:如图:过点C作CDAB于点D,在RtACD中,利用ACD的正切可得AD=0.625CD,同样在RtBCD中,可得BD= 0.755CD,再根据AB=BD-CD=780,代入进行求解即可得.试题解析:如图:过点C作CDAB于点D,由已知可得:ACD=32°,BCD =37°,在RtACD中,ADC=90°,AD=CD·tanACD=CD·tan32°=0.625CD,在RtBCD中,BDC=90°,BD=CD·tanBCD=CD·tan37°=0.755CD,AB=BD-CD=780,0.755CD-0.625CD=780,CD=10,答:小岛到海岸线的距离是10米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形、根据图形灵活选用三角函数进行求解是关键.20、(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.569.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.599.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.579.5所占的百分比;(2)观察可知79.599.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.599.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.579.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为50,30%;(2)不能;由统计图知,79.589.5和89.599.5两组占参赛选手60%,而7879.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的共有8种结果,故P=.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.21、(1)y=;(2)(4,0)或(0,0)【解析】(1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用ABP的面积为8,可求P点坐标.【详解】解:(1)把x=1代入y=2x4,可得y=2×14=2,A(1,2),把(1,2)代入y=,可得k=1×2=6,反比例函数的解析式为y=;(2)根据题意可得:2x4=,解得x1=1,x2=1,把x2=1,代入y=2x4,可得y=6,点B的坐标为(1,6)设直线AB与x轴交于点C,y=2x4中,令y=0,则x=2,即C(2,0),设P点坐标为(x,0),则×|x2|×(2+6)=8,解得x=4或0,点P的坐标为(4,0)或(0,0)【点睛】本题主要考查用待定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。22、(1)见解析;(2)1【解析】试题分析:根据角平分线上的点到角的两边距离相等知作出A的平分线即可;根据平行四边形的性质可知AB=CD=5,ADBC,再根据角平分线的性质和平行线的性质得到BAE=BEA,再根据等腰三角形的性质和线段的和差关系即可求解试题解析:(1)如图所示:E点即为所求(2)四边形ABCD是平行四边形,AB=CD=5,ADBC,DAE=AEB,AE是A的平分线,DAE=BAE,BAE=BEA,BE=BA=5,CE=BCBE=1考点:作图复杂作图;平行四边形的性质23、10,1【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的 一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,答:所围矩形猪舍的长为10m、宽为1m 考点:一元二次方程的应用题24、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【解析】利用二次函数图象上点的坐标特征可得出点A、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出DE的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论综上即可得出结论【详解】当时,有,解得:,点A的坐标为当时,点B的坐标为,解得:,抛物线的解析式为点A的坐标为,点B的坐标为,直线AB的解析式为点D的横坐标为x,则点D的坐标为,点E的坐标为,如图点F的坐标为,点A的坐标为,点B的坐标为,当时,S取最大值,最大值为18,此时点E的坐标为,与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为,若要和相似,只需或如图设点D的坐标为,则点E的坐标为,当时,为等腰直角三角形,即,解得:舍去,点D的坐标为;当时,点E的纵坐标为4,解得:,舍去,点D的坐标为综上所述:存在点D,使得和相似,此时点D的坐标为或故答案为:(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【点睛】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标25、(1)答案见解析;(2)AB=1BE;(1)1【解析】试题分析:(1)先判断出OCF+CFO=90°,再判断出OCF=ODF,即可得出结论;(2)先判断出BDE=A,进而得出EBDEDA,得出AE=2DE,DE=2BE,即可得出结论;(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=x,进而得出OE=1+2x,最后用勾股定理即可得出结论试题解析:(1)证明:连结OD,如图EF=ED,EFD=EDFEFD=CFO,CFO=EDFOCOF,OCF+CFO=90°OC=OD,OCF=ODF,ODC+EDF=90°,即ODE=90°,ODDE点D在O上,DE是O的切线;(2)线段AB、BE之间的数量关系为:AB=1BE证明如下:AB为O直径,ADB=90°,ADO=BDEOA=OD,ADO=A,BDE=A,而BED=DEA,EBDEDA,RtABD中,tanA=,=,AE=2DE,DE=2BE,AE=4BE,AB=1BE;(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=xOF=1,OE=1+2x在RtODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,x=(舍)或x=2,圆O的半径为1点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出EBDEDA是解答本题的关键26、(1)a=-1,B坐标为(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.【解析】(1)利用待定系数法即可解决问题;(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,再用m表示点C的坐标,需分两种情况讨论,用待定系数法即可解决问题.【详解】(1)把点A(0,2)代入抛物线的解析式可得,2=a+3,a=-1,抛物线的解析式为y=-(x-1)2+3,顶点为(1,3)(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,由解得x=点C的横坐标为MN=m-1,四边形MDEN是正方形,C(,m-1)把C点代入y=-(x-1)2+3,得m-1=-+3,解得m=3或-5(舍去)平移后的解析式为y=-(x-3)2+3,当点C在x轴的下方时,C(,1-m)把C点代入y=-(x-1)2+3,得1-m=-+3,解得m=7或-1(舍去)平移后的解析式为y=-(x-7)2+3综上:平移后的解析式为y=-(x-3)2+3,或y=-(x-7)2+3.【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知正方形的性质与函数结合进行求解.27、13.1【解析】试题分析:如图,作CMAB交AD于M,MNAB于N,根据=,可求得CM的长,在RTAMN中利用三角函数求得AN的长,再由MNBC,ABCM,判定四边形MNBC是平行四边形,即可得BN的长,最后根据AB=AN+BN即可求得AB的长试题解析:如图作CMAB交AD于M,MNAB于N由题意=,即=,CM=,在RTAMN中,ANM=90°,MN=BC=4,AMN=72°,tan72°=,AN12.3,MNBC,ABCM,四边形MNBC是平行四边形,BN=CM=,AB=AN+BN=13.1米考点:解直角三角形的应用.