云南省昆明市盘龙区(禄劝县重点名校2023届中考数学最后冲刺模拟试卷含解析.doc
-
资源ID:87838033
资源大小:726KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
云南省昆明市盘龙区(禄劝县重点名校2023届中考数学最后冲刺模拟试卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1- 的绝对值是( )A-4BC4D0.42在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为()ABCD3下列计算正确的是()Ax2x3x6B(m+3)2m2+9Ca10÷a5a5D(xy2)3xy64甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20;乙超市一次性降价40;丙超市第一次降价30,第二次降价10,此时顾客要购买这种商品,最划算的超市是( )A甲B乙C丙D都一样5如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D、C的位置,若EFB=65°,则AED为( )。A70°B65°C50°D25°6的倒数是()AB2C2D7估计的值在( )A0到l之间B1到2之间C2到3之间D3到4之间8如图图形中,可以看作中心对称图形的是()ABCD9下列运算正确的是()Aa2+a2=a4B(a+b)2=a2+b2Ca6÷a2=a3D(2a3)2=4a610下列运算结果正确的是( )A3a2a2 = 2Ba2·a3= a6C(a2)3 = a6Da2÷a2 = a二、填空题(共7小题,每小题3分,满分21分)11计算:+(|3|)0=_12矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足PBEDBC,若APD是等腰三角形,则PE的长为数_.13如图,正五边形ABCDE和正三角形AMN都是O的内接多边形,则BOM_.14如图,A、B、C是O上的三点,若C=30°,OA=3,则弧AB的长为_(结果保留)15如图,把一个面积为1的正方形分成两个面积为的长方形,再把其中一个面积为的长方形分成两个面积为的正方形,再把其中一个面积为的正方形分成两个面积为的长方形,如此进行下去,试用图形揭示的规律计算:_16分式方程的解为_17下面是“作已知圆的内接正方形”的尺规作图过程已知:O求作:O的内接正方形作法:如图,(1)作O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与O交于C、D两点,顺次连接A、C、B、D即四边形ACBD为所求作的圆内接正方形请回答:该尺规作图的依据是_三、解答题(共7小题,满分69分)18(10分)有这样一个问题:探究函数的图象与性质小怀根据学习函数的经验,对函数的图象与性质进行了探究下面是小怀的探究过程,请补充完成:(1)函数的自变量x的取值范围是 ;(2)列出y与x的几组对应值请直接写出m的值,m= ;(3)请在平面直角坐标系xOy中,描出表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出函数的一条性质 19(5分)如图,在直角三角形ABC中,(1)过点A作AB的垂线与B的平分线相交于点D(要求:尺规作图,保留作图痕迹,不写作法);(2)若A=30°,AB=2,则ABD的面积为 20(8分)如图,AB、AC分别是O的直径和弦,ODAC于点D过点A作O的切线与OD的延长线交于点P,PC、AB的延长线交于点F(1)求证:PC是O的切线;(2)若ABC60°,AB10,求线段CF的长21(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角FHE=60°,求篮框D到地面的距离(精确到0.01米).(参考数据:cos75°0.2588, sin75°0.9659,tan75°3.732,) 22(10分)我们知道中,如果,那么当时,的面积最大为6;(1)若四边形中,且,直接写出满足什么位置关系时四边形面积最大?并直接写出最大面积.(2)已知四边形中,求为多少时,四边形面积最大?并求出最大面积是多少?23(12分) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m%小时,求m的值24(14分)如图所示,抛物线yx2+bx+c经过A、B两点,A、B两点的坐标分别为(1,0)、(0,3)求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DCDE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与DOC相似,请你直接写出所有满足条件的点P的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】直接用绝对值的意义求解.【详解】的绝对值是故选B【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键2、A【解析】设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率【详解】解:设袋子中黄球有x个,根据题意,得:,解得:x=3,即袋中黄球有3个,所以随机摸出一个黄球的概率为,故选A【点睛】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比得到所求的情况数是解决本题的关键3、C【解析】根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案.【详解】x2x3x5,故选项A不合题意;(m+3)2m2+6m+9,故选项B不合题意;a10÷a5a5,故选项C符合题意;(xy2)3x3y6,故选项D不合题意故选:C【点睛】本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算.4、B【解析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论【详解】解:降价后三家超市的售价是:甲为(1-20%)2m=0.64m,乙为(1-40%)m=0.6m,丙为(1-30%)(1-10%)m=0.63m,0.6m0.63m0.64m,此时顾客要购买这种商品最划算应到的超市是乙故选:B【点睛】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小5、C【解析】首先根据ADBC,求出FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知DEF=FED,最后求得AED的大小【详解】解:ADBC,EFB=FED=65°,由折叠的性质知,DEF=FED=65°,AED=180°-2FED=50°,故选:C【点睛】此题考查了长方形的性质与折叠的性质此题比较简单,解题的关键是注意数形结合思想的应用6、B【解析】根据乘积是1的两个数叫做互为倒数解答【详解】解:×11的倒数是1故选B【点睛】本题考查了倒数的定义,是基础题,熟记概念是解题的关键7、B【解析】9<11<16,故选B.8、D【解析】根据 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选D【点睛】此题主要考查了中心对称图形,关键掌握中心对称图形定义9、D【解析】根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答【详解】A、a2+a2=2a2,故错误;B、(a+b)2=a2+2ab+b2,故错误;C、a6÷a2=a4,故错误;D、(-2a3)2=4a6,正确;故选D【点睛】本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键是熟记公式和法则10、C【解析】选项A, 3a2a2 = 2 a2;选项B, a2·a3= a5;选项C, (a2)3 = a6;选项D,a2÷a2 = 1.正确的只有选项C,故选C.二、填空题(共7小题,每小题3分,满分21分)11、【解析】原式= .12、3或1.2【解析】【分析】由PBEDBC,可得PBE=DBC,继而可确定点P在BD上,然后再根据APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】四边形ABCD是矩形,BAD=C=90°,CD=AB=6,BD=10,PBEDBC,PBE=DBC,点P在BD上,如图1,当DP=DA=8时,BP=2,PBEDBC,PE:CD=PB:DB=2:10,PE:6=2:10,PE=1.2; 如图2,当AP=DP时,此时P为BD中点,PBEDBC,PE:CD=PB:DB=1:2,PE:6=1:2,PE=3; 综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.13、48°【解析】连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可【详解】连接OA,五边形ABCDE是正五边形,AOB=72°,AMN是正三角形,AOM=120°,BOM=AOM-AOB=48°,故答案为48°点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键14、【解析】C=30°,AOB=60°,.即的长为.15、【解析】结合图形发现计算方法: ,即计算其面积和的时候,只需让总面积减去剩下的面积.【详解】解:原式= 故答案为:【点睛】此题注意结合图形的面积找到计算的方法:其中的面积和等于总面积减去剩下的面积.16、-1【解析】【分析】先去分母,化为整式方程,然后再进行检验即可得.【详解】两边同乘(x+2)(x-2),得:x-23x=0,解得:x=-1,检验:当x=-1时,(x+2)(x-2)0,所以x=-1是分式方程的解,故答案为:-1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.17、相等的圆心角所对的弦相等,直径所对的圆周角是直角【解析】根据圆内接正四边形的定义即可得到答案.【详解】到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.【点睛】本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点.三、解答题(共7小题,满分69分)18、(1)x1;(2)2;(2)见解析;(4)在x1和x1上均单调递增;【解析】(1)根据分母非零即可得出x+10,解之即可得出自变量x的取值范围;(2)将y=代入函数解析式中求出x值即可;(2)描点、连线画出函数图象;(4)观察函数图象,写出函数的一条性质即可【详解】解:(1)x+10,x1故答案为x1(2)当y=时,解得:x=2故答案为2(2)描点、连线画出图象如图所示(4)观察函数图象,发现:函数在x1和x1上均单调递增【点睛】本题考查了反比例函数的性质以及函数图象,根据给定数据描点、连线画出函数图象是解题的关键19、(1)见解析(2) 【解析】(1)分别作ABC的平分线和过点A作AB的垂线,它们的交点为D点;(2)利用角平分线定义得到ABD=30°,利用含30度的直角三角形三边的关系得到AD=AB=,然后利用三角形面积公式求解【详解】解:(1)如图,点D为所作;(2)CAB=30°,ABC=60°BD为角平分线,ABD=30°DAAB,DAB=90°在RtABD中,AD=AB=,ABD的面积=×2×=故答案为【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了三角形面积公式20、(1)证明见解析(2)1 【解析】(1)连接OC,可以证得OAPOCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:OCP=90°,即OCPC,即可证得;(2)先证OBC是等边三角形得COB=60°,再由(1)中所证切线可得OCF=90°,结合半径OC=1可得答案【详解】(1)连接OCODAC,OD经过圆心O,AD=CD,PA=PC在OAP和OCP中,OAPOCP(SSS),OCP=OAPPA是半O的切线,OAP=90°,OCP=90°,即OCPC,PC是O的切线(2)OB=OC,OBC=60°,OBC是等边三角形,COB=60°AB=10,OC=1由(1)知OCF=90°,CF=OCtanCOB=1【点睛】本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题21、3.05米.【解析】延长FE交CB的延长线于M,过A作AGFM于G,解直角三角形即可得到结论【详解】延长FE交CB的延长线于M,过A作AGFM于G,在RtABC中,tanACB=,AB=BCtan75°=0.60×3.732=2.2392,GM=AB=2.2392,在RtAGF中,FAG=FHD=60°,sinFAG=,sin60°=,FG=2.165,DM=FG+GMDF3.05米答:篮框D到地面的距离是3.05米考点:解直角三角形的应用22、 (1)当,时有最大值1;(2)当时,面积有最大值32.【解析】(1)由题意当ADBC,BDAD时,四边形ABCD的面积最大,由此即可解决问题(2)设BD=x,由题意:当ADBC,BDAD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题【详解】(1) 由题意当ADBC,BDAD时,四边形ABCD的面积最大,最大面积为×6×(16-6)=1故当,时有最大值1;(2)当,时有最大值,设, 由题意:当ADBC,BDAD时,四边形ABCD的面积最大,抛物线开口向下当 时,面积有最大值32.【点睛】本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题23、(1)1600千米;(2)1【解析】试题分析:(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;(2)根据题意得出方程(80+120)(1-m%)(8+m%)=1600,进而解方程求出即可试题解析:(1)设原时速为xkm/h,通车后里程为ykm,则有: ,解得: 答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1m%)(8+m%)=1600,解得:m1=1,m2=0(不合题意舍去),答:m的值为124、(1)y=x22x3;(2)D(0,1);(3)P点坐标(,0)、(,2)、(3,8)、(3,10)【解析】(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EFy轴于点F,利用勾股定理表示出DC,DE的长再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明CODDFE,得出CDE=90°,即CDDE,然后当以C、D、P为顶点的三角形与DOC相似时,根据对应边不同进行分类讨论:当OC与CD是对应边时,有比例式,能求出DP的值,又因为DE=DC,所以过点P作PGy轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;当OC与DP是对应边时,有比例式,易求出DP,仍过点P作PGy轴于点G,利用比例式求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标.【详解】解:(1)抛物线y=x2+bx+c经过A(1,0)、B(0,3),解得,故抛物线的函数解析式为y=x22x3;(2)令x22x3=0,解得x1=1,x2=3,则点C的坐标为(3,0),y=x22x3=(x1)24,点E坐标为(1,4),设点D的坐标为(0,m),作EFy轴于点F(如下图),DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,DC=DE,m2+9=m2+8m+16+1,解得m=1,点D的坐标为(0,1);(3)点C(3,0),D(0,1),E(1,4),CO=DF=3,DO=EF=1,根据勾股定理,CD=,在COD和DFE中,CODDFE(SAS),EDF=DCO,又DCO+CDO=90°,EDF+CDO=90°,CDE=180°90°=90°,CDDE,当OC与CD是对应边时,DOCPDC,即=,解得DP=,过点P作PGy轴于点G,则,即,解得DG=1,PG=,当点P在点D的左边时,OG=DGDO=11=0,所以点P(,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,2);当OC与DP是对应边时,DOCCDP,即=,解得DP=3,过点P作PGy轴于点G,则,即,解得DG=9,PG=3,当点P在点D的左边时,OG=DGOD=91=8,所以,点P的坐标是(3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,10),综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与DOC相似,满足条件的点P共有4个,其坐标分别为(,0)、(,2)、(3,8)、(3,10)考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.