云南省姚安县重点中学2023年中考数学适应性模拟试题含解析.doc
-
资源ID:87838044
资源大小:955.50KB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
云南省姚安县重点中学2023年中考数学适应性模拟试题含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c0,ab,4acb20;其中正确的结论有()A1个B2个C3个D4个2若关于x的不等式组只有5个整数解,则a的取值范围( )ABCD3实数a在数轴上的位置如图所示,则化简后为()A7B7C2a15D无法确定4滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A10分钟B13分钟C15分钟D19分钟5下列运算正确的是( )A4x+5y=9xyB(m)3m7=m10C(x3y)5=x8y5Da12÷a8=a46郑州地铁号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()ABCD7如图,从圆外一点引圆的两条切线,切点分别为,如果, ,那么弦AB的长是( )ABCD8如图,BD是ABC的角平分线,DCAB,下列说法正确的是()ABC=CDBADBCCAD=BCD点A与点C关于BD对称9把不等式组的解集表示在数轴上,正确的是()ABCD10关于x的一元二次方程x24x+k=0有两个相等的实数根,则k的值是( )A2B2C4D411下列算式的运算结果正确的是()Am3m2=m6 Bm5÷m3=m2(m0)C(m2)3=m5 Dm4m2=m212如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿ABC的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示ADP的面积y(cm2)关于x(cm)的函数关系的图象是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,以点为圆心的两个同心圆中,大圆的弦是小圆的切线,点是切点,则劣弧AB 的长为 .(结果保留)14关于的分式方程的解为正数,则的取值范围是_15小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:评价条数 等级餐厅五星四星三星二星一星合计甲53821096129271000乙460187154169301000丙4863888113321000(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在_(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.16如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于_17如图,RtABC中,BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为_18如果抛物线y=x2+(m1)x+3经过点(2,1),那么m的值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知点、在直线上,且,于点,且,以为直径在的左侧作半圆,于,且.若半圆上有一点,则的最大值为_;向右沿直线平移得到;如图,若截半圆的的长为,求的度数;当半圆与的边相切时,求平移距离.20(6分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是 ;A2B2C2的面积是 平方单位21(6分)如图,一位测量人员,要测量池塘的宽度 的长,他过 两点画两条相交于点 的射线,在射线上取两点 ,使 ,若测得 米,他能求出 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案22(8分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;售价(元/台)月销售量(台)400200250x(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?23(8分)如图所示,在ABCD中,E是CD延长线上的一点,BE与AD交于点F,DECD.(1)求证:ABFCEB;(2)若DEF的面积为2,求ABCD的面积24(10分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m的值和E组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数25(10分)已知BD平分ABF,且交AE于点D(1)求作:BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于点C,连接CD,当ACBD时,求证:四边形ABCD是菱形26(12分)如图,ABCD的对角线AC,BD相交于点OE,F是AC上的两点,并且AE=CF,连接DE,BF(1)求证:DOEBOF;(2)若BD=EF,连接DE,BF判断四边形EBFD的形状,并说明理由27(12分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O(1)若AP=1,则AE= ;(2)求证:点O一定在APE的外接圆上;当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据图像可得:a<0,b<0,c=0,即abc=0,则正确;当x=1时,y<0,即a+b+c<0,则错误;根据对称轴可得:=,则b=3a,根据a<0,b<0可得:a>b;则正确;根据函数与x轴有两个交点可得:4ac>0,则正确.故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.2、A【解析】分别解两个不等式得到得x20和x3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2ax20,且整数解为15、16、17、18、19,得到143-2a15,然后再解关于a的不等式组即可【详解】解得x20解得x3-2a,不等式组只有5个整数解,不等式组的解集为3-2ax20,143-2a15,故选:A【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式143-2a15是解此题的关键3、C【解析】根据数轴上点的位置判断出a4与a11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果【详解】解:根据数轴上点的位置得:5a10,a40,a110,则原式|a4|a11|a4+a112a15,故选:C【点睛】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键4、D【解析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.5、D【解析】各式计算得到结果,即可作出判断【详解】解:A、4x+5y=4x+5y,错误;B、(-m)3m7=-m10,错误;C、(x3y)5=x15y5,错误;D、a12÷a8=a4,正确;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键6、C【解析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得【详解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,恰好选择从同一个口进出的概率为=,故选C【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比7、C【解析】先利用切线长定理得到,再利用可判断为等边三角形,然后根据等边三角形的性质求解【详解】解:,PB为的切线,为等边三角形,故选C【点睛】本题考查切线长定理,掌握切线长定理是解题的关键8、A【解析】由BD是ABC的角平分线,根据角平分线定义得到一对角ABD与CBD相等,然后由DCAB,根据两直线平行,得到一对内错角ABD与CDB相等,利用等量代换得到DBC=CDB,再根据等角对等边得到BC=CD,从而得到正确的选项【详解】BD是ABC的角平分线,ABD=CBD,又DCAB,ABD=CDB,CBD=CDB,BC=CD故选A【点睛】此题考查了等腰三角形的判定,以及平行线的性质学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题这是一道较易的证明题,锻炼了学生的逻辑思维能力9、A【解析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可【详解】 由,得x2,由,得x1,所以不等式组的解集是:2x1不等式组的解集在数轴上表示为:故选A【点睛】本题考查的是解一元一次不等式组熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键10、C【解析】对于一元二次方程a+bx+c=0,当=-4ac=0时,方程有两个相等的实数根.即16-4k=0,解得:k=4.考点:一元二次方程根的判别式11、B【解析】直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案【详解】A、m3m2=m5,故此选项错误;B、m5÷m3=m2(m0),故此选项正确;C、(m-2)3=m-6,故此选项错误;D、m4-m2,无法计算,故此选项错误;故选:B【点睛】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键12、B【解析】ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象【详解】解:当P点由A运动到B点时,即0x2时,y×2xx,当P点由B运动到C点时,即2x4时,y×2×22,符合题意的函数关系的图象是B;故选B【点睛】本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围二、填空题:(本大题共6个小题,每小题4分,共24分)13、8.【解析】试题分析: 因为AB为切线,P为切点,劣弧AB所对圆心角考点: 勾股定理;垂径定理;弧长公式.14、且.【解析】方程两边同乘以x-1,化为整数方程,求得x,再列不等式得出m的取值范围【详解】方程两边同乘以x-1,得,m-1=x-1,解得x=m-2,分式方程的解为正数,x=m-20且x-10,即m-20且m-2-10,m2且m1,故答案为m2且m115、丙【解析】不低于四星,即四星与五星的和居多为符合题意的餐厅【详解】不低于四星,即比较四星和五星的和,丙最多故答案是:丙【点睛】考查了可能性的大小和统计表解题的关键是将问题转化为比较四星和五星的和的多少16、2:1【解析】过点O作OEAB于点E,延长EO交CD于点F,可得OFCD,由AB/CD,可得AOBDOC,根据相似三角形对应高的比等于相似比可得,由此即可求得答案.【详解】如图,过点O作OEAB于点E,延长EO交CD于点F,AB/CD,OFD=OEA=90°,即OFCD,AB/CD,AOBDOC,又OEAB,OFCD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,=,故答案为:2:1【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键.17、【解析】【分析】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AEAC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长,根据相似三角形对应边的比可得结论【详解】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AEAC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长;RtABC中,BAC=90°,AB=3,AC=6,BC=9,SABC=ABAC=BCAF,3×6=9AF,AF=2,AA'=2AF=4,A'FD=DEC=90°,A'DF=CDE,A'=C,AEA'=BAC=90°,AEA'BAC,A'E=,即AD+DE的最小值是,故答案为【点睛】本题考查轴对称最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题.18、2【解析】把点(2,1)代入y=x2+(m1)x+3,即可求出m的值.【详解】抛物线y=x2+(m1)x+3经过点(2,1),1= -4+2(m-1)+3,解得m=2,故答案为2.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2);【解析】(1)由图可知当点F与点D重合时,AF最大,根据勾股定理即可求出此时AF的长;(2)连接EG、EH根据的长为可求得GEH=60°,可得GEH是等边三角形,根据等边三角形的三个角都等于60°得出HGE=60°,可得EG/A'O,求得GEO=90°,得出GEO是等腰直角三角形,求得EGO=45°,根据平角的定义即可求出A'GO的度数;分C'A'与半圆相切和B'A'与半圆相切两种情况进行讨论,利用切线的性质、勾股定理、切斜长定理等知识进行解答即可得出答案【详解】解:(1)当点F与点D重合时,AF最大,AF最大=AD=,故答案为:;(2)连接、.,.,是等边三角形,.,.当切半圆于时,连接,则.,切半圆于点,.,平移距离为.当切半圆于时,连接并延长于点,.,.【点睛】本题主要考查了弧长公式、勾股定理、切线的性质,作出过切点的半径构造出直角三角形是解决此题的关键20、(1)(2,2);(2)(1,0);(3)1【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出A2B2C2的面积试题解析:(1)如图所示:C1(2,2);故答案为(2,2);(2)如图所示:C2(1,0);故答案为(1,0);(3)=20,=20,=40,A2B2C2是等腰直角三角形,A2B2C2的面积是:××=1平方单位故答案为1考点:1、平移变换;2、位似变换;3、勾股定理的逆定理21、可以求出A、B之间的距离为111.6米.【解析】根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.【详解】解:,(对顶角相等),解得米所以,可以求出、之间的距离为米【点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.22、 (1)390,1-5x,y=-5x+1(300x2);(2)售价定位320元时,利润最大,为3元.【解析】(1)根据题中条件可得390,1-5x,若销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w.【详解】(1)依题意得:y20050×化简得:y5x1(2)依题意有:,解得300x2(3)由(1)得:w(5x1)(x200)5x23200x4400005(x320)23x320在300x2内,当x320时,w最大3即售价定为320元/台时,可获得最大利润为3元【点睛】本题考查了利润率问题的数量关系的运用,一次函数的解析式的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时求出二次函数的解析式时关键23、(1)见解析;(2)16【解析】试题分析:(1)要证ABFCEB,需找出两组对应角相等;已知了平行四边形的对角相等,再利用ABCD,可得一对内错角相等,则可证(2)由于DEFEBC,可根据两三角形的相似比,求出EBC的面积,也就求出了四边形BCDF的面积同理可根据DEFAFB,求出AFB的面积由此可求出ABCD的面积试题解析:(1)证明:四边形ABCD是平行四边形A=C,ABCDABF=CEBABFCEB(2)解:四边形ABCD是平行四边形ADBC,AB平行且等于CDDEFCEB,DEFABFDE=CD,SDEF=2SCEB=18,SABF=8,S四边形BCDF=SBCE-SDEF=16S四边形ABCD=S四边形BCDF+SABF=16+8=1考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质24、略;m=40, 14°;870人【解析】试题分析:根据A组的人数和比例得出总人数,然后得出D组的人数,补全条形统计图;根据C组的人数和总人数得出m的值,根据E组的人数求出E的百分比,然后计算圆心角的度数;根据D组合E组的百分数总和,估算出该校的每周的课外阅读时间不小于6小时的人数试题解析:(1)补全频数分布直方图,如图所示(2)10÷10%=100 40÷100=40% m=404÷100=4% “E”组对应的圆心角度数=4%×360°=14°(3)3000×(25%+4%)=870(人)答:估计该校学生中每周的课外阅读时间不小于6小时的人数是870人考点:统计图25、 (1)见解析:(2)见解析.【解析】试题分析:(1)根据角平分线的作法作出BAE的平分线AP即可;(2)先证明ABOCBO,得到AO=CO,AB=CB,再证明ABOADO,得到BO=DO由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形试题解析:(1)如图所示:(2)如图:在ABO和CBO中,ABO=CBO,OB=OB, AOB=COB=90°,ABOCBO(ASA),AO=CO,AB=CB在ABO和ADO中,OAB=OAD,OA=OA,AOB=AOD=90°,ABOADO(ASA),BO=DOAO=CO,BO=DO,四边形ABCD是平行四边形,AB=CB,平行四边形ABCD是菱形考点:1菱形的判定;2作图基本作图26、(2)证明见解析;(2)四边形EBFD是矩形理由见解析.【解析】分析:(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:四边形ABCD是平行四边形,OA=OC,OB=OD,AE=CF,OE=OF,在DEO和BOF中,DOEBOF(2)结论:四边形EBFD是矩形理由:OD=OB,OE=OF,四边形EBFD是平行四边形,BD=EF,四边形EBFD是矩形点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型27、(1);(2)证明见解析;(3)【解析】试题分析:(1)由正方形的性质得出A=B=EPG=90°,PFEG,AB=BC=4,OEP=45°,由角的互余关系证出AEP=PBC,得出APEBCP,得出对应边成比例即可求出AE的长;(2)A、P、O、E四点共圆,即可得出结论;连接OA、AC,由勾股定理求出AC=,由圆周角定理得出OAP=OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设APE的外接圆的圆心为M,作MNAB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可试题解析:(1)四边形ABCD、四边形PEFG是正方形,A=B=EPG=90°,PFEG,AB=BC=4,OEP=45°,AEP+APE=90°,BPC+APE=90°,AEP=PBC,APEBCP,即,解得:AE=,故答案为:;(2)PFEG,EOF=90°,EOF+A=180°,A、P、O、E四点共圆,点O一定在APE的外接圆上;连接OA、AC,如图1所示:四边形ABCD是正方形,B=90°,BAC=45°,AC=,A、P、O、E四点共圆,OAP=OEP=45°,点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,即点O经过的路径长为;(3)设APE的外接圆的圆心为M,作MNAB于N,如图2所示:则MNAE,ME=MP,AN=PN,MN=AE,设AP=x,则BP=4x,由(1)得:APEBCP,即,解得:AE= =,x=2时,AE的最大值为1,此时MN的值最大=×1=,即APE的圆心到AB边的距离的最大值为【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明APEBCP是解题的关键.