欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2023届江苏省溧水高级中学毕业升学考试模拟卷数学卷含解析.doc

    • 资源ID:87838145       资源大小:1.30MB        全文页数:24页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023届江苏省溧水高级中学毕业升学考试模拟卷数学卷含解析.doc

    2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1二次函数yx26x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A(1,0)B(4,0)C(5,0)D(6,0)2a、b互为相反数,则下列成立的是()Aab=1Ba+b=0Ca=bD=-13如图,两个反比例函数y1(其中k10)和y2在第一象限内的图象依次是C1和C2,点P在C1上矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EFx轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A:1B2:C2:1D29:144如图,由四个正方体组成的几何体的左视图是( )ABCD5下列实数中,结果最大的是()A|3|B()CD36由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()ABCD7下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )A1个B2个C3个D4个8某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是() 动时间(小时)33.544.5人数1121A中位数是4,平均数是3.75B众数是4,平均数是3.75C中位数是4,平均数是3.8D众数是2,平均数是3.89一元二次方程x2+2x15=0的两个根为()Ax1=3,x2=5 Bx1=3,x2=5Cx1=3,x2=5 Dx1=3,x2=510若一组数据1、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )A0B2.5C3 D511一个数和它的倒数相等,则这个数是( )A1B0C±1D±1和012如图,在中,将折叠,使点与的中点重合,折痕为,则线段的长为( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如果,那么的结果是_.14已知关于x的方程x2mx40有两个相等的实数根,则实数m的值是_15如图,已知点A是反比例函数的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为_16如果a是不为1的有理数,我们把称为a的差倒数如:2的差倒数是,-1的差倒数是,已知,是的差倒数,是的差倒数,是的差倒数,依此类推,则 _ 17如图,已知P是线段AB的黄金分割点,且PAPB若S1表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_S2.(填“”“="”“" ”)18如图,的半径为,点,都在上,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为_(结果保留)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)顶点为D的抛物线yx2+bx+c交x轴于A、B(3,0),交y轴于点C,直线yx+m经过点C,交x轴于E(4,0)求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线yx+m于G,交抛物线于H,连接CH,将CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标20(6分)已知顶点为A的抛物线ya(x)22经过点B(,2),点C(,2)(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若OPMMAF,求POE的面积;(3)如图2,点Q是折线ABC上一点,过点Q作QNy轴,过点E作ENx轴,直线QN与直线EN相交于点N,连接QE,将QEN沿QE翻折得到QEN,若点N落在x轴上,请直接写出Q点的坐标21(6分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?22(8分)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h10t5t1小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?23(8分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC点P是该抛物线上一动点,设点P的横坐标为m(m4)(1)求该抛物线的表达式和ACB的正切值;(2)如图2,若ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PMCD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由24(10分)如图,两座建筑物的水平距离为.从点测得点的仰角为53° ,从点测得点的俯角为37° ,求两座建筑物的高度(参考数据:25(10分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元 若该公司当月卖出3部汽车,则每部汽车的进价为 万元; 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)26(12分)对于方程1,某同学解法如下:解:方程两边同乘6,得3x2(x1)1 去括号,得3x2x21 合并同类项,得x21 解得x3 原方程的解为x3 上述解答过程中的错误步骤有 (填序号);请写出正确的解答过程27(12分)如图,已知O中,AB为弦,直线PO交O于点M、N,POAB于C,过点B作直径BD,连接AD、BM、AP(1)求证:PMAD;(2)若BAP=2M,求证:PA是O的切线;(3)若AD=6,tanM=,求O的直径参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,其中一个交点的坐标为,则另一个交点的坐标为,故选C【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质2、B【解析】依据相反数的概念及性质即可得【详解】因为a、b互为相反数,所以a+b=1,故选B【点睛】此题主要考查相反数的概念及性质相反数的定义:只有符号不同的两个数互为相反数,1的相反数是13、A【解析】试题分析:首先根据反比例函数y2=的解析式可得到=×3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出EOF的面积,可以得到AOC与EOF的面积比,然后证明EOFAOC,根据对应边之比等于面积比的平方可得到EFAC=故选A考点:反比例函数系数k的几何意义4、B【解析】从左边看可以看到两个小正方形摞在一起,故选B.5、B【解析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可【详解】根据实数比较大小的方法,可得<|-3|=3-(-),所以最大的数是:-(-)故选B【点睛】此题主要考查了实数大小比较的方法,及判断无理数的范围,要熟练掌握,解答此题的关键是要明确:正实数0负实数,两个负实数绝对值大的反而小6、A【解析】由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.【详解】解:几何体从左到右的最高层数依次为1,2,3,所以主视图从左到右的层数应该为1,2,3,故选A.【点睛】本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.7、B【解析】解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个故选B【点睛】本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键8、C【解析】试题解析:这组数据中4出现的次数最多,众数为4,共有5个人,第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.1故选C9、C【解析】运用配方法解方程即可.【详解】解:x2+2x15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故选择C.【点睛】本题考查了解一元二次方程,选择合适的解方程方法是解题关键.10、C【解析】解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=2,解得a=0,符合排列顺序(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=2,解得a=0,不符合排列顺序(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=a,解得a=2.5,符合排列顺序(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=1,解得a=5,不符合排列顺序(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,a不可能是1故选C【点睛】本题考查中位数;算术平均数11、C【解析】根据倒数的定义即可求解.【详解】的倒数等于它本身,故符合题意.故选:.【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12、C【解析】设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在RtBND中,根据勾股定理可得关于x的方程,解方程即可求解【详解】设,则.由折叠的性质,得.因为点是的中点,所以.在中,由勾股定理,得,即,解得,故线段的长为4.故选C.【点睛】此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】令k,则a=2k,b=3k,代入到原式化简的结果计算即可【详解】令k,则a=2k,b=3k,原式=1故答案为:1【点睛】本题考查了约分,解题的关键是掌握约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分14、±4【解析】分析:由方程有两个相等的实数根,得到根的判别式等于0,列出关于m的方程,求出方程的解即可得到m的值详解:方程有两个相等的实数根, 解得: 故答案为点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.15、【解析】点A是反比例函数的图象上的一个动点,设A(m,n),过A作ACx轴于C,过B作BDx轴于D,AC=n,OC=m,ACO=ADO=90°,AOB=90°,CAO+AOC=AOC+BOD=90°,CAO=BOD,在ACO与ODB中,ACO=ODB,CAO=BOD,AO=BO,ACOODB,AC=OD=n,CO=BD=m,B(n,m),mn=2,n(m)=2,点B所在图象的函数表达式为,故答案为:16、.【解析】利用规定的运算方法,分别算得a1,a2,a3,a4找出运算结果的循环规律,利用规律解决问题.【详解】a1=4a2=,a3=,a4=,数列以4,三个数依次不断循环,2019÷3=673,a2019=a3=,故答案为:.【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.17、=【解析】黄金分割点,二次根式化简【详解】设AB=1,由P是线段AB的黄金分割点,且PAPB,根据黄金分割点的,AP=,BP=S1=S118、【解析】根据题意先利用旋转的性质得到BOD=120°,则AOD=150°,然后根据弧长公式计算即可.【详解】解:扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,BOD=120°,AOD=AOB+BOD=30°+120°=150°,的长=故答案为:【点睛】本题考查了弧长的计算及旋转的性质,掌握弧长公式l=(弧长为l,圆心角度数为n,圆的半径为R)是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)yx2+2x+3;(2)S(x)2+;当x时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CGHG,列等式求解即可【详解】(1)将点E代入直线解析式中,0×4+m,解得m3,解析式为yx+3,C(0,3),B(3,0),则有,解得,抛物线的解析式为:yx2+2x+3;(2)yx2+2x+3(x1)2+4,D(1,4),设直线BD的解析式为ykx+b,代入点B、D,解得,直线BD的解析式为y2x+6,则点M的坐标为(x,2x+6),S(3+62x)x(x)2+,当x时,S有最大值,最大值为(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,t+3),H(t,t2+2t+3),HG|t2+2t+3(t+3)|t2t|CGt,CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HGy轴,HGCF,HGHF,CGCF,GHCCHF,FCHCHG,FCHFHC,GCHGHC,CGHG,|t2t|t,当t2tt时,解得t10(舍),t24,此时点P(4,0)当t2tt时,解得t10(舍),t2,此时点P(,0)综上,点P的坐标为(4,0)或(,0)【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CGHG为解题关键20、 (1) y(x)22;(2)POE的面积为或;(3)点Q的坐标为(,)或(,2)或(,2)【解析】(1)将点B坐标代入解析式求得a的值即可得;(2)由OPM=MAF知OPAF,据此证OPEFAE得=,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得【详解】解:(1)把点B(,2)代入ya(x)22,解得a1,抛物线的表达式为y(x)22,(2)由y(x)22知A(,2),设直线AB表达式为ykxb,代入点A,B的坐标得,解得,直线AB的表达式为y2x1,易求E(0,1),F(0,),M(,0),若OPMMAF,OPAF,OPEFAE,OPFA ,设点P(t,2t1),则,解得t1,t2,由对称性知,当t1时,也满足OPMMAF,t1,t2都满足条件,POE的面积OE·|t|,POE的面积为或;(3)如图,若点Q在AB上运动,过N作直线RSy轴,交QR于点R,交NE的延长线于点S,设Q(a,2a1),则NEa,QN2a.由翻折知QNQN2a,NENEa,由QNEN90°易知QRNNSE,即=2,QR2,ES ,由NEESNSQR可得a2,解得a,Q(,),如图,若点Q在BC上运动,且Q在y轴左侧,过N作直线RSy轴,交BC于点R,交NE的延长线于点S.设NEa,则NEa.易知RN2,SN1,QNQN3,QR,SEa.在RtSEN中,(a)212a2,解得a,Q(,2),如图,若点Q在BC上运动,且点Q在y轴右侧,过N作直线RSy轴,交BC于点R,交NE的延长线于点S.设NEa,则NEa.易知RN2,SN1,QNQN3,QR,SEa.在RtSEN中,(a)212a2,解得a,Q(,2)综上,点Q的坐标为(,)或(,2)或(,2)【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点21、100或200【解析】试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可试题解析:设每台冰箱应降价x元,每件冰箱的利润是:元,卖(8+×4)件,列方程得,(8+×4)=4800,x2300x+20000=0,解得x1=200,x2=100;要使百姓得到实惠,只能取x=200,答:每台冰箱应降价200元考点:一元二次方程的应用22、(1)小球飞行时间是1s时,小球最高为10m;(1) 1t3.【解析】(1)将函数解析式配方成顶点式可得最值;(1)画图象可得t的取值【详解】(1)h5t1+10t5(t1)1+10,当t1时,h取得最大值10米;答:小球飞行时间是1s时,小球最高为10m;(1)如图,由题意得:1510t5t1,解得:t11,t13,由图象得:当1t3时,h15,则小球飞行时间1t3时,飞行高度不低于15m【点睛】本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键23、(1)y=x23x+1;tanACB=;(2)m=;(3)四边形ADMQ是平行四边形;理由见解析.【解析】(1)由点A、B坐标利用待定系数法求解可得抛物线解析式为y=x2-3x+1,作BGCA,交CA的延长线于点G,证GABOAC得=,据此知BG=2AG在RtABG中根据BG2+AG2=AB2,可求得AG=继而可得BG=,CG=AC+AG=,根据正切函数定义可得答案;(2)作BHCD于点H,交CP于点K,连接AK,易得四边形OBHC是正方形,应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h在RtABK中,由勾股定理求得h=,据此求得点K(1,)待定系数法求出直线CK的解析式为y=-x+1设点P的坐标为(x,y)知x是方程x2-3x+1=-x+1的一个解解之求得x的值即可得出答案;(3)先求出点D坐标为(6,1),设P(m,m2-3m+1)知M(m,1),H(m,0)及PH=m2-3m+1),OH=m,AH=m-2,MH=1当1m6时,由OANHAP知=据此得ON=m-1再证ONQHMQ得=据此求得OQ=m-1从而得出AQ=DM=6-m结合AQDM可得答案当m6时,同理可得【详解】解:(1)将点A(2,0)和点B(1,0)分别代入y=ax2+bx+1,得,解得:;该抛物线的解析式为y=x23x+1,过点B作BGCA,交CA的延长线于点G(如图1所示),则G=90°COA=G=90°,CAO=BAG,GABOAC=2BG=2AG,在RtABG中,BG2+AG2=AB2,(2AG)2+AG2=22,解得: AG=BG=,CG=AC+AG=2+=在RtBCG中,tanACB(2)如图2,过点B作BHCD于点H,交CP于点K,连接AK易得四边形OBHC是正方形应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HBKB=1h,AK=OA+HK=2+(1h)=6h,在RtABK中,由勾股定理,得AB2+BK2=AK2,22+h2=(6h)2解得h=,点K(1,),设直线CK的解析式为y=hx+1,将点K(1,)代入上式,得=1h+1解得h=,直线CK的解析式为y=x+1,设点P的坐标为(x,y),则x是方程x23x+1=x+1的一个解,将方程整理,得3x216x=0,解得x1=,x2=0(不合题意,舍去)将x1=代入y=x+1,得y=,点P的坐标为(,),m=;(3)四边形ADMQ是平行四边形理由如下:CDx轴,yC=yD=1,将y=1代入y=x23x+1,得1=x23x+1,解得x1=0,x2=6,点D(6,1),根据题意,得P(m, m23m+1),M(m,1),H(m,0),PH=m23m+1,OH=m,AH=m2,MH=1,当1m6时,DM=6m,如图3,OANHAP,=,ON=m1,ONQHMQ,OQ=m1,AQ=OAOQ=2(m1)=6m,AQ=DM=6m,又AQDM,四边形ADMQ是平行四边形当m6时,同理可得:四边形ADMQ是平行四边形综上,四边形ADMQ是平行四边形【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、平行四边形的判定与性质及勾股定理、三角函数等知识点24、建筑物的高度为.建筑物的高度为.【解析】分析:过点D作DEAB于于E,则DE=BC=60m在RtABC中,求出AB在RtADE中求出AE即可解决问题详解:过点D作DEAB于于E,则DE=BC=60m, 在RtABC中,tan53°=,AB=80(m)在RtADE中,tan37°=,AE=45(m),BE=CD=ABAE=35(m)答:两座建筑物的高度分别为80m和35m点睛:本题考查的是解直角三角形的应用仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键25、解:(1)22.1(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:21270.1(x1)=(0.1x0.9)(万元),当0x10,根据题意,得x·(0.1x0.9)0.3x=12,整理,得x214x120=0,解这个方程,得x1=20(不合题意,舍去),x2=2当x10时,根据题意,得x·(0.1x0.9)x=12,整理,得x219x120=0,解这个方程,得x1=24(不合题意,舍去),x2=3310,x2=3舍去答:要卖出2部汽车【解析】一元二次方程的应用(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:270.1×2=22.1,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0x10,以及当x10时,分别讨论得出即可26、(1)错误步骤在第步(2)x4.【解析】(1)第步在去分母的时候,两边同乘以6,但是方程右边没有乘,另外在去括号时没有注意到符号的变化,所以出现错误;(2)注重改正错误,按以上步骤进行即可【详解】解:(1)方程两边同乘6,得3x2(x1)6 去括号,得3x2x+26 错误步骤在第步(2)方程两边同乘6,得3x2(x1)6去括号,得3x2x+26合并同类项,得x+26解得x4原方程的解为x4【点睛】本题考查的解一元一次方程,注意去分母与去括号中常见错误,符号也经常是出现错误的原因27、(1)证明见解析;(2)证明见解析;(3)1;【解析】(1)根据平行线的判定求出即可;(2)连接OA,求出OAP=BAP+OAB=BOC+OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=AD=3,求出x即可【详解】(1)BD是直径,DAB=90°,POAB,DAB=MCB=90°,PMAD;(2)连接OA,OB=OM,M=OBM,BON=2M,BAP=2M,BON=BAP,POAB,ACO=90°,AON+OAC=90°,OA=OB,BON=AON,BAP=AON,BAP+OAC=90°,OAP=90°,OA是半径,PA是O的切线;(3)连接BN,则MBN=90°tanM=,=,设BC=x,CM=2x,MN是O直径,NMAB,MBN=BCN=BCM=90°,NBC=M=90°BNC,MBCBNC,BC2=NC×MC,NC=x,MN=2x+x=2.1x,OM=MN=1.21x,OC=2x1.21x=0.71x,O是BD的中点,C是AB的中点,AD=6,OC=0.71x=AD=3,解得:x=4,MO=1.21x=1.21×4=1,O的半径为1【点睛】本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度

    注意事项

    本文(2023届江苏省溧水高级中学毕业升学考试模拟卷数学卷含解析.doc)为本站会员(lil****205)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开