2023届江苏省扬州市广陵区梅岭中学中考适应性考试数学试题含解析.doc
-
资源ID:87838246
资源大小:779KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届江苏省扬州市广陵区梅岭中学中考适应性考试数学试题含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )ABCD2一个多边形的每个内角都等于120°,则这个多边形的边数为( )A4B5C6D73如图,O是ABC的外接圆,B=60°,O的半径为4,则AC的长等于()A4B6C2D84如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()ABC9D52014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()ABCD6如图,若锐角ABC内接于O,点D在O外(与点C在AB同侧),则C与D的大小关系为()ACDBCDCC=DD无法确定7如图所示的几何体,它的左视图与俯视图都正确的是( )ABCD8的平方根是( )A2BC±2D±9如图,ABCD,E为CD上一点,射线EF经过点A,EC=EA若CAE=30°,则BAF=()A30° B40° C50° D60°10如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A B C D二、填空题(共7小题,每小题3分,满分21分)11将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则1的度数为_ 12一元二次方程x2=3x的解是:_13计算两个两位数的积,这两个数的十位上的数字相同,个位上的数字之和等于153×57=3021,38×32=1216,84×86=7224,71×79=2(1)你发现上面每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的 ,请写出一个符合上述规律的算式 (2)设其中一个数的十位数字为a,个位数字为b,请用含a,b的算式表示这个规律14观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是_m.15已知点,在二次函数的图象上,若,则_(填“”“”“”)16在正方形中,点在对角线上运动,连接,过点作,交直线于点(点不与点重合),连接,设,则和之间的关系是_(用含的代数式表示)17某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移a,b=m - i,n - j,并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,mn的最大值为_.三、解答题(共7小题,满分69分)18(10分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?19(5分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F求证:ADEBFE;若DF平分ADC,连接CE试判断CE和DF的位置关系,并说明理由20(8分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线ADCB到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,A=45°,B=30°,桥DC和AB平行(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:1.14,1.73)21(10分)解方程:.22(10分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点(1)求抛物线的解析式,并直接写出点D的坐标;(2)当AMN的周长最小时,求t的值;(3)如图,过点M作MEx轴,交抛物线y=ax2+bx于点E,连接EM,AE,当AME与DOC相似时请直接写出所有符合条件的点M坐标23(12分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a、b.队别平均分中位数方差合格率优秀率七年级6.7m3.4190%n八年级7.17.51.6980%10%(1)请依据图表中的数据,求a、b的值;(2)直接写出表中的m、n的值;(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由24(14分)如图,AB是O的直径,点E是上的一点,DBC=BED求证:BC是O的切线;已知AD=3,CD=2,求BC的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题分析:列表如下黑白1白2黑(黑,黑)(白1,黑)(白2,黑)白1(黑,白1)(白1,白1)(白2,白1)白2(黑,白2)(白1,白2)(白2,白2)由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是故答案选D考点:用列表法求概率2、C【解析】试题解析:多边形的每一个内角都等于120°,多边形的每一个外角都等于180°-120°=10°,边数n=310°÷10°=1故选C考点:多边形内角与外角3、A【解析】解:连接OA,OC,过点O作ODAC于点D,AOC=2B,且AOD=COD=AOC,COD=B=60°;在RtCOD中,OC=4,COD=60°,CD=OC=2,AC=2CD=4故选A【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理4、A【解析】解:如图,连接BE,设BE与AC交于点P,四边形ABCD是正方形,点B与D关于AC对称,PD=PB,PD+PE=PB+PE=BE最小即P在AC与BE的交点上时,PD+PE最小,为BE的长度直角CBE中,BCE=90°,BC=9,CE=CD=3,BE=故选A点睛:此题考查了轴对称最短路线问题,正方形的性质,要灵活运用对称性解决此类问题找出P点位置是解题的关键5、C【解析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式【详解】2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,2014年我省财政收入为a(1+8.9%)亿元,2015年比2014年增长9.5%,2015年我省财政收为b亿元,2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C【点睛】此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题6、A【解析】直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE,如图所示:ACB=AEB,AEBD,CD故选:A【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键7、D【解析】试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D考点:D.8、D【解析】先化简,然后再根据平方根的定义求解即可【详解】=2,2的平方根是±,的平方根是±故选D【点睛】本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错9、D【解析】解:EC=EACAE=30°,C=30°,AED=30°+30°=60°ABCD,BAF=AED=60°故选D点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键10、D【解析】试题分析:俯视图是从上面看到的图形从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D考点:简单组合体的三视图二、填空题(共7小题,每小题3分,满分21分)11、75°【解析】先根据同旁内角互补,两直线平行得出ACDF,再根据两直线平行内错角相等得出2=A=45°,然后根据三角形内角与外角的关系可得1的度数【详解】ACB=DFE=90°,ACB+DFE=180°,ACDF,2=A=45°,1=2+D=45°+30°=75°故答案为:75°【点睛】本题考查了平行线的判定与性质,三角形外角的性质,求出2=A=45°是解题的关键12、x1=0,x2=1【解析】先移项,然后利用因式分解法求解【详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,x1=0,x2=1故答案为:x1=0,x2=1【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解13、 (1)十位和个位,44×46=2024;(2) 10a(a+1)+b(1b)【解析】分析:(1)、根据题意得出其一般性的规律,从而得出答案;(2)、利用代数式表示出其一般规律得出答案详解:(1)由已知等式知,每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,例如:44×46=2024,(2)(1a+b)(1a+1b)=10a(a+1)+b(1b)点睛:本题主要考查的是规律的发现与整理,属于基础题型找出一般性的规律是解决这个问题的关键14、135【解析】试题分析:根据题意可得:BDA=30°,DAC =60°,在RtABD中,因为AB=45m,所以AD=m,所以在RtACD中,CD=AD=×=135m考点:解直角三角形的应用15、【解析】抛物线的对称轴为:x=1,当x>1时,y随x的增大而增大.若x1>x2>1 时,y1>y2 .故答案为>16、或【解析】当F在边AB上时,如图1作辅助线,先证明,得,根据正切的定义表示即可;当F在BA的延长线上时,如图2,同理可得:,表示AF的长,同理可得结论【详解】解:分两种情况:当F在边AB上时,如图1,过E作,交AB于G,交DC于H,四边形ABCD是正方形,中,即;当F在BA的延长线上时,如图2,同理可得:,中,【点睛】本题考查了正方形的性质、三角形全等的性质和判定、三角函数等知识,熟练掌握正方形中辅助线的作法是关键,并注意F在直线AB上,分类讨论17、36【解析】10=a+b=(m-i)+(n-j)=(m+n)-(i+j)所以:m+n=10+i+j当(m+n)取最小值时,(i+j)也必须最小,所以i和j都是2,这样才能(i+j)才能最小,因此:m+n=10+2=12也就是:当m+n=12时,m·n最大是多少?这就容易了:m·n<=36所以m·n的最大值就是36三、解答题(共7小题,满分69分)18、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球【详解】(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,根据题意得:,解得:x50,经检验,x50是原方程的解,且符合题意,x+21答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)设可购买m个乙种足球,则购买(50m)个甲种足球,根据题意得:50×(1+10%)(50m)+1×(110%)m2910,解得:m2答:这所学校最多可购买2个乙种足球【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系19、(1)见解析;(1)见解析【解析】(1)由全等三角形的判定定理AAS证得结论(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,1=1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CEDF【详解】解:(1)证明:如图,四边形ABCD是平行四边形,ADBC又点F在CB的延长线上,ADCF1=1点E是AB边的中点,AE=BE,在ADE与BFE中,ADEBFE(AAS)(1)CEDF理由如下:如图,连接CE,由(1)知,ADEBFE,DE=FE,即点E是DF的中点,1=1DF平分ADC,1=22=1CD=CFCEDF20、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km【解析】(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.【详解】解:(1)作CHAB于点H,如图所示,BC=12km,B=30°,km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DMAB于点M,如图所示,桥DC和AB平行,CH=6km,DM=CH=6km,DMA=90°,B=45°,MH=EF=DC,AD=km,AM=DM=6km,现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)(AM+MH+BH)=AD+DC+BCAMMHBH=AD+BCAMBH=km,即现在从A地到达B地可比原来少走的路程是4.1km【点睛】做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.21、 【解析】分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可.详解:去分母,得 去括号,得 移项,得 合并同类项,得 系数化为1,得经检验,原方程的解为点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.22、(1)y=x2x,点D的坐标为(2,);(2)t=2;(3)M点的坐标为(2,0)或(6,0)【解析】(1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D的坐标;(2)连接AC,如图,先计算出AB=4,则判断平行四边形OCBA为菱形,再证明AOC和ACB都是等边三角形,接着证明OCMACN得到CM=CN,OCM=ACN,则判断CMN为等边三角形得到MN=CM,于是AMN的周长=OA+CM,由于CMOA时,CM的值最小,AMN的周长最小,从而得到t的值;(3)先利用勾股定理的逆定理证明OCD为直角三角形,COD=90°,设M(t,0),则E(t,t2-t),根据相似三角形的判定方法,当时,AMECOD,即|t-4|:4=|t2-t |:,当时,AMEDOC,即|t-4|:=|t2-t |:4,然后分别解绝对值方程可得到对应的M点的坐标【详解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,抛物线解析式为y=x2-x;y=x2-x =-2) 2-;点D的坐标为(2,-);(2)连接AC,如图,AB=4,而OA=4,平行四边形OCBA为菱形,OC=BC=4,C(2,2),AC=4,OC=OA=AC=AB=BC,AOC和ACB都是等边三角形,AOC=COB=OCA=60°,而OC=AC,OM=AN,OCMACN,CM=CN,OCM=ACN,OCM+ACM=60°,ACN+ACM=60°,CMN为等边三角形,MN=CM,AMN的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,当CMOA时,CM的值最小,AMN的周长最小,此时OM=2,t=2;(3)C(2,2),D(2,-),CD=,OD=,OC=4,OD2+OC2=CD2,OCD为直角三角形,COD=90°,设M(t,0),则E(t,t2-t),AME=COD,当时,AMECOD,即|t-4|:4=|t2-t |:,整理得|t2-t|=|t-4|,解方程t2-t =(t-4)得t1=4(舍去),t2=2,此时M点坐标为(2,0);解方程t2-t =-(t-4)得t1=4(舍去),t2=-2(舍去);当时,AMEDOC,即|t-4|:=|t2-t |:4,整理得|t2-t |=|t-4|,解方程t2-t =t-4得t1=4(舍去),t2=6,此时M点坐标为(6,0);解方程t2-t =-(t-4)得t1=4(舍去),t2=-6(舍去);综上所述,M点的坐标为(2,0)或(6,0)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想解决数学问题23、(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级.【解析】试题分析:(1)根据题中数据求出a与b的值即可;(2)根据(1)a与b的值,确定出m与n的值即可;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可试题解析:(1)根据题意得:解得a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为=20%,即n=20%;(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,故八年级队比七年级队成绩好考点:1.条形统计图;2.统计表;3.加权平均数;4.中位数;5.方差24、 (1)证明见解析(2)BC=【解析】(1)AB是O的直径,得ADB=90°,从而得出BAD=DBC,即ABC=90°,即可证明BC是O的切线;(2)可证明ABCBDC,则,即可得出BC=【详解】(1)AB是O的切直径,ADB=90°,又BAD=BED,BED=DBC,BAD=DBC,BAD+ABD=DBC+ABD=90°,ABC=90°,BC是O的切线;(2)解:BAD=DBC,C=C,ABCBDC,即BC2=ACCD=(AD+CD)CD=10,BC=考点:1.切线的判定;2.相似三角形的判定和性质.