2023届江苏省金坛市重点达标名校中考数学押题卷含解析.doc
-
资源ID:87838430
资源大小:764.50KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届江苏省金坛市重点达标名校中考数学押题卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,直立于地面上的电线杆 AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得 BC=6 米,CD=4 米,BCD=150°,在 D 处测得电线杆顶端 A 的仰 角为 30°,则电线杆 AB 的高度为( )ABCD2一个几何体的三视图如图所示,该几何体是A直三棱柱B长方体C圆锥D立方体3甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A B C D4|的倒数是( )A2BCD25一次函数y=kx+k(k0)和反比例函数在同一直角坐标系中的图象大致是( )ABCD6下列计算正确的是( )A2xx1Bx2x3x6C(mn)2m2n2D(xy3)2x2y67如图所示的几何体,它的左视图是( )ABCD8对于函数y=,下列说法正确的是()Ay是x的反比例函数B它的图象过原点C它的图象不经过第三象限Dy随x的增大而减小9A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()ABC +49D10在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,矩形中,将矩形沿折叠,点落在点处.则重叠部分的面积为_.12不等式5x33x+5的非负整数解是_13如图,直线mn,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若1=30°,则2=_14如图,在ABC中,ACB90°,ACBC3,将ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE2,则sinBFD的值为_15如图,直线a、b相交于点O,若1=30°,则2=_16已知(x、y、z0),那么的值为_三、解答题(共8题,共72分)17(8分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)1064每吨土特产利润(万元)0.70.80.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元(1)求y与x之间的函数关系式;(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值18(8分)如图,在四边形ABCD中,ABCD,ABC=ADC,DE垂直于对角线AC,垂足是E,连接BE(1)求证:四边形ABCD是平行四边形;(2)若AB=BE=2,sinACD= ,求四边形ABCD的面积19(8分)为支持农村经济建设,某玉米种子公司对某种种子的销售价格规定如下:每千克的价格为a元,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某农户对购买量和付款金额这两个变量的对应关系用列表做了分析,并绘制出了函数图象,如图所示,其中函数图象中A点的左边为(2,10),请你结合表格和图象,回答问题:购买量x(千克)11.522.53付款金额y(元)a7.51012b(1)由表格得:a= ; b= ;(2)求y关于x的函数解析式;(3)已知甲农户将8元钱全部用于购买该玉米种子,乙农户购买4千克该玉米种子,如果他们两人合起来购买,可以比分开购买节约多少钱?20(8分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示(1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?21(8分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元 (进价、售价均保持不变,利润销售收入进货成本)(1)求A,B两种型号的电风扇的销售单价(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由22(10分)如图,已知点E,F分别是ABCD的对角线BD所在直线上的两点,BF=DE,连接AE,CF,求证:CF=AE,CFAE23(12分)如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD,等边ABE,已知BAC=30°,EFAB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形24如图,在平面直角坐标系中,直线:与轴,轴分别交于,两点,且点,点在轴正半轴上运动,过点作平行于轴的直线(1)求的值和点的坐标;(2)当时,直线与直线交于点,反比例函数的图象经过点,求反比例函数的解析式;(3)当时,若直线与直线和(2)反比例函数的图象分别交于点,当间距离大于等于2时,求的取值范围参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】延长AD交BC的延长线于E,作DFBE于F,BCD=150°,DCF=30°,又CD=4,DF=2,CF= =2,由题意得E=30°,EF= ,BE=BC+CF+EF=6+4,AB=BE×tanE=(6+4)×=(2+4)米,即电线杆的高度为(2+4)米点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.2、A【解析】根据三视图的形状可判断几何体的形状【详解】观察三视图可知,该几何体是直三棱柱故选A本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键3、A【解析】分析:甲队每天修路xm,则乙队每天修(x10)m,因为甲、乙两队所用的天数相同,所以,。故选A。4、D【解析】根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案【详解】|=,的倒数是2;|的倒数是2,故选D【点睛】本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键5、C【解析】A、由反比例函数的图象在一、三象限可知k0,由一次函数的图象过二、四象限可知k0,两结论相矛盾,故选项错误; B、由反比例函数的图象在二、四象限可知k0,由一次函数的图象与y轴交点在y轴的正半轴可知k0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k0,由一次函数的图象过二、三、四象限可知k0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k0,由一次函数的图象与y轴交点在y轴的负半轴可知k0,两结论相矛盾,故选项错误,故选C6、D【解析】根据合并同类项的法则,积的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解【详解】解:A、2x-x=x,错误; B、x2x3=x5,错误; C、(m-n)2=m2-2mn+n2,错误; D、(-xy3)2=x2y6,正确; 故选D【点睛】考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果7、A【解析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线【详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:A【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键8、C【解析】直接利用反比例函数的性质结合图象分布得出答案【详解】对于函数y=,y是x2的反比例函数,故选项A错误;它的图象不经过原点,故选项B错误;它的图象分布在第一、二象限,不经过第三象限,故选项C正确;第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,故选C【点睛】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键9、A【解析】根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.【详解】轮船在静水中的速度为x千米/时,顺流航行时间为:,逆流航行时间为:,可得出方程:,故选:A【点睛】本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键10、D【解析】先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可【详解】解:点M的坐标是(4,3),点M到x轴的距离是3,到y轴的距离是4,点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,r的取值范围是3r4,故选:D【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、10【解析】根据翻折的特点得到,.设,则.在中,即,解出x,再根据三角形的面积进行求解.【详解】翻折,又,.设,则.在中,即,解得,.【点睛】此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.12、0,1,2,1【解析】5x11x+5,移项得,5x1x5+1,合并同类项得,2x8,系数化为1得,x4所以不等式的非负整数解为0,1,2,1;故答案为0,1,2,1【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键 13、75°【解析】试题解析:直线l1l2, 故答案为14、【解析】分析:过点D作DGAB于点G.根据折叠性质,可得AE=DE=2,AF=DF,CE=1,在RtDCE中,由勾股定理求得,所以DB=;在RtABC中,由勾股定理得;在RtDGB中,由锐角三角函数求得,;设AF=DF=x,则FG= ,在RtDFG中,根据勾股定理得方程=,解得,从而求得.的值详解:如图所示,过点D作DGAB于点G.根据折叠性质,可知AEFDEF,AE=DE=2,AF=DF,CE=AC-AE=1,在RtDCE中,由勾股定理得,DB=;在RtABC中,由勾股定理得;在RtDGB中,;设AF=DF=x,得FG=AB-AF-GB=,在RtDFG中,即=,解得,=.故答案为.点睛:主要考查了翻折变换的性质、勾股定理、锐角三件函数的定义;解题的关键是灵活运用折叠的性质、勾股定理、锐角三角函数的定义等知识来解决问题15、30°【解析】因1和2是邻补角,且1=30°,由邻补角的定义可得2=180°1=180°30°=150°解:1+2=180°,又1=30°,2=150°16、1【解析】解:由(x、y、z0),解得:x=3z,y=2z,原式=1故答案为1点睛:本题考查了分式的化简求值和解二元一次方程组,难度适中,关键是先用z把x与y表示出来再进行代入求解三、解答题(共8题,共72分)17、 (1)y=3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元【解析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30x(1x+1)=(123x)辆,从而可以得到y与x的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数【详解】(1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30x(1x+1)=(123x)辆,根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(123x)=3.4x+141.1(1)根据题意得:,解得:7x,x为整数,7x210.60,y随x增大而减小,当x=7时,y取最大值,最大值=3.4×7+141.1=117.4,此时:1x+1=12,123x=1答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.18、(1)证明见解析;(2)S平行四边形ABCD =3 【解析】试题分析:(1)根据平行四边形的性质得出ABC+DCB=180°,推出ADC+BCD=180°,根据平行线的判定得出ADBC,根据平行四边形的判定推出即可;(2)证明ABE是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE和DE,得出AC的长,即可求出四边形ABCD的面积试题解析:(1)ABCD,ABC+DCB=180°,ABC=ADC,ADC+BCD=180°,ADBC,ABCD,四边形ABCD是平行四边形;(2)sinACD=,ACD=60°,四边形ABCD是平行四边形,ABCD,CD=AB=2,BAC=ACD=60°,AB=BE=2,ABE是等边三角形,AE=AB=2,DEAC,CDE=90°60°=30°,CE= CD=1,DE=CE=,AC=AE+CE=3,S平行四边形ABCD =2SACD =ACDE=319、(1)5,1 (2)当0x2时,y=5x,当x2时,y关于x的函数解析式为y=4x+2 (3)1.6元.【解析】(1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出a值,结合超过2千克部分的种子价格打8折可得出b值;(2)分段函数,当0x2时,设线段OA的解析式为ykx;当x2时,设关系式为yk1xb,然后将(2,10),且x3时,y1,代入关系式即可求出k,b的值,从而确定关系式;(3)代入(2)的解析式即可解答【详解】解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x,10÷25,a5,b2×55×0.81故答案为a5,b1(2)当0x2时,设线段OA的解析式为ykx,ykx的图象经过(2,10),2k10,解得k5,y5x;当x2时,设y与x的函数关系式为:yxbykx+b的图象经过点(2,10),且x3时,y1, ,解得,当x2时,y与x的函数关系式为:y4x2y关于x的函数解析式为: ;(3)甲农户将8元钱全部用于购买该玉米种子,即5x8,解得x1.6,即甲农户购买玉米种子1.6千克;如果他们两人合起来购买,共购买玉米种子(1.64)5.6千克,这时总费用为:y4×5.6224.4元(84×42)24.41.6(元)答:如果他们两人合起来购买,可以比分开购买节约1.6元【点睛】本题主要考查了一次函数的应用和待定系数法求一次函数解析式,根据已知得出图表中点的坐标是解题的关键注意:求正比例函数,只要一对x,y的值就可以;而求一次函数ykxb,则需要两组x,y的值20、(1)10,1;(2)【解析】(1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;(2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可【详解】解:(1)图象过点, ,解得的顶点坐标为,当时,最大=1答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元(2)函数图象的对称轴为直线,可知点关于对称轴的对称点是,又函数图象开口向下,当时,答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元【点睛】本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质21、 (1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标【解析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标【详解】(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台依题意,得解得答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30a)台依题意,得200a170(30a)5400,解得a10.答:A种型号的电风扇最多能采购10台(3)依题意,有(250200)a(210170)(30a)1400,解得a20.a10,在(2)的条件下超市不能实现利润为1400元的目标【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解22、证明见解析【解析】根据平行四边形性质推出ABCD,ABCD,得出EBAFDC,根据SAS证两三角形全等即可解决问题.【详解】解:四边形ABCD是平行四边形,AB=CD,ABCD,EBA=FDC,DE=BF,BE=DF,在ABE和CDF中,ABECDF(SAS),AE=CF,E=F,AECF【点睛】本题考查了平行四边形的性质和全等三角形的判定的应用,解题的关键是准确寻找全等三角形解决问题23、证明见解析【解析】(1)一方面RtABC中,由BAC=30°可以得到AB=2BC,另一方面ABE是等边三角形,EFAB,由此得到AE=2AF,并且AB=2AF,从而可证明AFEBCA,再根据全等三角形的性质即可证明AC=EF(2)根据(1)知道EF=AC,而ACD是等边三角形,所以EF=AC=AD,并且ADAB,而EFAB,由此得到EFAD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形【详解】证明:(1)RtABC中,BAC=30°,AB=2BC又ABE是等边三角形,EFAB,AB=2AFAF=BC在RtAFE和RtBCA中,AF=BC,AE=BA,AFEBCA(HL)AC=EF(2)ACD是等边三角形,DAC=60°,AC=ADDAB=DAC+BAC=90°EFADAC=EF,AC=AD,EF=AD四边形ADFE是平行四边形考点:1全等三角形的判定与性质;2等边三角形的性质;3平行四边形的判定24、(1),;(2);的取值范围是:【解析】(1)把代入得出的值,进而得出点坐标;(2)当时,将代入,进而得出的值,求出点坐标得出反比例函数的解析式;(3)可得,当向下运动但是不超过轴时,符合要求,进而得出的取值范围【详解】解:(1)直线: 经过点,;(2)当时,将代入,得,代入得,;(3)当时,即,而,如图,当向下运动但是不超过轴时,符合要求,的取值范围是:【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强