2023届河南省郑州市河南省实验中学中考试题猜想数学试卷含解析.doc
-
资源ID:87838755
资源大小:709.50KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届河南省郑州市河南省实验中学中考试题猜想数学试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如果边长相等的正五边形和正方形的一边重合,那么1的度数是( )A30°B15°C18°D20°2如图图形中,既是轴对称图形,又是中心对称图形的是()ABCD3袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球下列事件是必然事件的是( )A摸出的三个球中至少有一个球是黑球B摸出的三个球中至少有一个球是白球C摸出的三个球中至少有两个球是黑球D摸出的三个球中至少有两个球是白球4如图,正六边形ABCDEF内接于O,半径为4,则这个正六边形的边心距OM的长为()A2B2CD45如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=()AB1CD6一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球两次都摸到红球的概率是( )ABCD7下列图形中,既是中心对称图形又是轴对称图形的是()ABCD8已知M9x24x3,N5x24x2,则M与N的大小关系是( )AM>NBMNCM<ND不能确定9苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A(a+b)元B(3a+2b)元C(2a+3b)元D5(a+b)元10已知一组数据a,b,c的平均数为5,方差为4,那么数据a2,b2,c2的平均数和方差分别是.()A3,2B3,4C5,2D5,4二、填空题(共7小题,每小题3分,满分21分)11如图,平行四边形ABCD中,AB=AC=4,ABAC,O是对角线的交点,若O过A、C两点,则图中阴影部分的面积之和为_12如图,已知点A是反比例函数的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为_13在RtABC中,C=90,若AB=4,sinA =,则斜边AB边上的高CD的长为_.14如图,在ABC中,ABAC,D、E、F分别为AB、BC、AC的中点,则下列结论:ADFFEC;四边形ADEF为菱形;其中正确的结论是_.(填写所有正确结论的序号)15当x为_时,分式的值为116如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到AME当AB=1时,AME的面积记为S1;当AB=2时,AME的面积记为S2;当AB=3时,AME的面积记为S3;当AB=n时,AME的面积记为Sn当n2时,SnSn1= 17若关于x的不等式组恰有3个整数解,则字母a的取值范围是_三、解答题(共7小题,满分69分)18(10分)已知关于x的一元二次方程x2+(2m+3)x+m21有两根,求m的取值范围;若+1求m的值19(5分)如图,四边形ABCD内接于O,对角线AC为O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF求CDE的度数;求证:DF是O的切线;若AC=DE,求tanABD的值20(8分)已知:如图,在半径为2的扇形中,°,点C在半径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结(1)若C是半径OB中点,求的正弦值;(2)若E是弧AB的中点,求证:;(3)联结CE,当DCE是以CD为腰的等腰三角形时,求CD的长21(10分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图种类ABCDE出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;(2)在扇形统计图中,求A类对应扇形圆心角的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数22(10分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同)把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;若任意抽出一张不放回,然后再从余下的抽出一张请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率23(12分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率24(14分)在正方形网格中,每个小正方形的边长均为1个单位长度,ABC的三个顶点的位置如图所示现将ABC平移,使点A变换为点D,点E、F分别是B、C的对应点请画出平移后的DEF连接AD、CF,则这两条线段之间的关系是_参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解【详解】正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,1=108°-90°=18°故选C【点睛】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键2、B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故A不正确;B、既是轴对称图形,又是中心对称图形,故B正确;C、是轴对称图形,不是中心对称图形,故C不正确;D、既不是轴对称图形,也不是中心对称图形,故D不正确.故选B.【点睛】本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.3、A【解析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误故选A4、B【解析】分析:连接OC、OB,证出BOC是等边三角形,根据锐角三角函数的定义求解即可详解:如图所示,连接OC、OB多边形ABCDEF是正六边形,BOC=60°,OC=OB,BOC是等边三角形,OBM=60°,OM=OBsinOBM=4×2.故选B.点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键5、D【解析】由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到BAC=30°,求得ACBE,推出C在对角线AH上,得到A,C,H共线,于是得到结论【详解】如图,连接AC交BE于点O,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,AB=BE,四边形AEHB为菱形,AE=AB,AB=AE=BE,ABE是等边三角形,AB=3,AD=,tanCAB=,BAC=30°,ACBE,C在对角线AH上,A,C,H共线,AO=OH=AB=,OC=BC=,COB=OBG=G=90°,四边形OBGM是矩形,OM=BG=BC=,HM=OHOM=,故选D【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.6、A【解析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红红红绿绿红(红,红)(红,红)(绿,红)(绿,绿)红(红,红)(红,红)(绿,红)(绿,红)红(红,红)(红,红)(绿,红)(绿,红)绿(红,绿)(红,绿)(红,绿)(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)所有等可能的情况数为20种,其中两次都为红球的情况有6种,故选A.7、D【解析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出【详解】解:A. 此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;B. 此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;C. 此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D. 此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的定义,解题的关键是熟练的掌握中心对称图形与轴对称图形的定义.8、A【解析】若比较M,N的大小关系,只需计算M-N的值即可【详解】解:M9x24x3,N5x24x2,M-N=(9x24x3)-(5x24x2)=4(x-1)2+10,M>N故选A【点睛】本题的主要考查了比较代数式的大小,可以让两者相减再分析情况9、C【解析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.10、B【解析】试题分析:平均数为(a2 + b2 + c2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】AOB=COD,S阴影=SAOB四边形ABCD是平行四边形,OA=AC=×1=2ABAC,S阴影=SAOB=OAAB=×2×1=1【点睛】本题考查了扇形面积的计算12、【解析】点A是反比例函数的图象上的一个动点,设A(m,n),过A作ACx轴于C,过B作BDx轴于D,AC=n,OC=m,ACO=ADO=90°,AOB=90°,CAO+AOC=AOC+BOD=90°,CAO=BOD,在ACO与ODB中,ACO=ODB,CAO=BOD,AO=BO,ACOODB,AC=OD=n,CO=BD=m,B(n,m),mn=2,n(m)=2,点B所在图象的函数表达式为,故答案为:13、【解析】如图,在RtABC中,C=90,AB=4,sinA=,BC=,AC=,CD是AB边上的高,CD=AC·sinA=.故答案为:.14、【解析】根据三角形的中位线定理可得出AD=FE、AF=FC、DF=EC,进而可证出ADFFEC(SSS),结论正确;根据三角形中位线定理可得出EFAB、EF=AD,进而可证出四边形ADEF为平行四边形,由AB=AC结合D、F分别为AB、AC的中点可得出AD=AF,进而可得出四边形ADEF为菱形,结论正确;根据三角形中位线定理可得出DFBC、DF=BC,进而可得出ADFABC,再利用相似三角形的性质可得出,结论正确此题得解【详解】解:D、E、F分别为AB、BC、AC的中点,DE、DF、EF为ABC的中位线,AD=AB=FE,AF=AC=FC,DF=BC=EC在ADF和FEC中,ADFFEC(SSS),结论正确;E、F分别为BC、AC的中点,EF为ABC的中位线,EFAB,EF=AB=AD,四边形ADEF为平行四边形AB=AC,D、F分别为AB、AC的中点,AD=AF,四边形ADEF为菱形,结论正确;D、F分别为AB、AC的中点,DF为ABC的中位线,DFBC,DF=BC,ADFABC,结论正确故答案为【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键15、2【解析】分式的值是1的条件是,分子为1,分母不为1【详解】3x-6=1,x=2,当x=2时,2x+11当x=2时,分式的值是1故答案为2【点睛】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.16、【解析】连接BE,在线段AC同侧作正方形ABMN及正方形BCEF,BEAMAME与AMB同底等高AME的面积=AMB的面积当AB=n时,AME的面积为,当AB=n1时,AME的面积为当n2时,17、2a1【解析】先确定不等式组的整数解,再求出a的范围即可【详解】关于x的不等式组恰有3个整数解,整数解为1,0,1,2a1,故答案为:2a1【点睛】本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a的取值范围是解此题的关键三、解答题(共7小题,满分69分)18、 (1)m;(2)m的值为2【解析】(1)根据方程有两个相等的实数根可知1,求出m的取值范围即可;(2)根据根与系数的关系得出+与的值,代入代数式进行计算即可【详解】(1)由题意知,(2m+2)24×1×m21,解得:m;(2)由根与系数的关系得:+(2m+2),m2,+1,(2m+2)+m21,解得:m11,m12,由(1)知m,所以m11应舍去,m的值为2【点睛】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c1(a1)的两根时,x1+x2,x1x2是解答此题的关键19、(1)90°;(1)证明见解析;(3)1【解析】(1)根据圆周角定理即可得CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证ODF=ODC+FDC=OCD+DCF=90°,即可判定DF是O的切线;(3)根据已知条件易证CDEADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tanABD的值即可【详解】解:(1)解:对角线AC为O的直径,ADC=90°,EDC=90°;(1)证明:连接DO,EDC=90°,F是EC的中点,DF=FC,FDC=FCD,OD=OC,OCD=ODC,OCF=90°,ODF=ODC+FDC=OCD+DCF=90°,DF是O的切线;(3)解:如图所示:可得ABD=ACD,E+DCE=90°,DCA+DCE=90°,DCA=E,又ADC=CDE=90°,CDEADC,DC1=ADDEAC=1DE,设DE=x,则AC=1x,则AC1AD1=ADDE,期(1x)1AD1=ADx,整理得:AD1+ADx10x1=0,解得:AD=4x或4.5x(负数舍去),则DC=,故tanABD=tanACD=20、(2);(2)详见解析;(2)当是以CD为腰的等腰三角形时,CD的长为2或【解析】(2)先求出OCOB=2,设OD=x,得出CD=AD=OAOD=2x,根据勾股定理得:(2x)2x2=2求出x,即可得出结论;(2)先判断出,进而得出CBE=BCE,再判断出OBEEBC,即可得出结论;(3)分两种情况:当CD=CE时,判断出四边形ADCE是菱形,得出OCE=90°在RtOCE中,OC2=OE2CE2=4a2在RtCOD中,OC2=CD2OD2=a2(2a)2,建立方程求解即可;当CD=DE时,判断出DAE=DEA,再判断出OAE=OEA,进而得出DEA=OEA,即:点D和点O重合,即可得出结论【详解】(2)C是半径OB中点,OCOB=2DE是AC的垂直平分线,AD=CD设OD=x,CD=AD=OAOD=2x在RtOCD中,根据勾股定理得:(2x)2x2=2,x,CD,sinOCD;(2)如图2,连接AE,CEDE是AC垂直平分线,AE=CEE是弧AB的中点,AE=BE,BE=CE,CBE=BCE连接OE,OE=OB,OBE=OEB,CBE=BCE=OEBB=B,OBEEBC,BE2=BOBC;(3)DCE是以CD为腰的等腰三角形,分两种情况讨论:当CD=CE时DE是AC的垂直平分线,AD=CD,AE=CE,AD=CD=CE=AE,四边形ADCE是菱形,CEAD,OCE=90°,设菱形的边长为a,OD=OAAD=2a在RtOCE中,OC2=OE2CE2=4a2在RtCOD中,OC2=CD2OD2=a2(2a)2,4a2=a2(2a)2,a=22(舍)或a=;CD=;当CD=DE时DE是AC垂直平分线,AD=CD,AD=DE,DAE=DEA连接OE,OA=OE,OAE=OEA,DEA=OEA,点D和点O重合,此时,点C和点B重合,CD=2综上所述:当DCE是以CD为腰的等腰三角形时,CD的长为2或【点睛】本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键21、(1)800,240;(2)补图见解析;(3)9.6万人【解析】试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案试题解析:(1)本次调查的市民有200÷25%=800(人),B类别的人数为800×30%=240(人),故答案为800,240;(2)A类人数所占百分比为1(30%+25%+14%+6%)=25%,A类对应扇形圆心角的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图22、(1);(2).【解析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;(2)画出树状图,然后根据概率公式列式计算即可得解【详解】(1)正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,抽到的卡片既是中心对称图形又是轴对称图形的概率是;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,所以,P(抽出的两张卡片的图形是中心对称图形)【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比23、(1)详见解析;(2)72°;(3)【解析】(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;(2)用360°乘以C类别人数所占比例即可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得【详解】解:(1) 抽 查的总人数为:(人) 类人数为:(人)补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:(3)设男生为、,女生为、,画树状图得:恰好抽到一男一女的情况共有12 种,分别是 (恰好抽到一男一女)【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小24、见解析【解析】(1)如图:(2)连接AD、CF,则这两条线段之间的关系是ADCF,且ADCF