2023届江苏省苏州市XX实验中学中考数学模试卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A1处B2处C3处D4处2甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A=B=C=D=3某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )A2人B16人C20人D40人4扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为( )A10cmB20cmC10cmD20cm5如图,在ABC中,ACB=90°,点D为AB的中点,AC=3,cosA=,将DAC沿着CD折叠后,点A落在点E处,则BE的长为()A5B4C7D56下列式子中,与互为有理化因式的是()ABCD7下列因式分解正确的是ABCD8下列图案是轴对称图形的是()ABCD9下列运算正确的是()Axx4=x5Bx6÷x3=x2C3x2x2=3D(2x2)3=6x610若一组数据1、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )A0B2.5C3 D511在同一坐标系中,反比例函数y与二次函数ykx2+k(k0)的图象可能为()ABCD12点M(a,2a)在反比例函数y的图象上,那么a的值是( )A4B4C2D±2二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90°得矩形AEFG,连接CG、EG,则CGE=_14含角30°的直角三角板与直线,的位置关系如图所示,已知,1=60°,以下三个结论中正确的是_(只填序号)AC=2BC BCD为正三角形 AD=BD15从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是_16某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是_17一组数据1,4,4,3,4,3,4的众数是_18中国古代数学著作算法统宗中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地求此人第六天走的路程为多少里设此人第六天走的路程为x里,依题意,可列方程为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求是多少?请同学们阅读以下解答过程就知道答案了.设,则 即:事实上,按照这位大臣的要求,放满一个棋盘上的个格子需要粒米.那么到底多大呢?借助计算机中的计算器进行计算,可知答案是一个位数: ,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:我国古代数学名著算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,则塔的顶层共有多少盏灯?计算: 某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,求满足如下条件的所有正整数,且这一数列前项和为的正整数幂.请直接写出所有满足条件的软件激活码正整数的值.20(6分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角DAN和DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CMAN)求灯杆CD的高度;求AB的长度(结果精确到0.1米)(参考数据:=1.1sin37°060,cos37°0.80,tan37°0.75)21(6分)在矩形ABCD中,两条对角线相交于O,AOB=60°,AB=2,求AD的长22(8分)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DAAB于A,CBAB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?23(8分)关于的一元二次方程有实数根求的取值范围;如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值24(10分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是 ;(2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.25(10分)如图,AB是O的直径,点C在AB的延长线上,CD与O相切于点D,CEAD,交AD的延长线于点E(1)求证:BDC=A;(2)若CE=4,DE=2,求AD的长26(12分)计算:16+()2|2|+2tan60°27(12分)计算下列各题:(1)tan45°sin60°cos30°;(2)sin230°+sin45°tan30°参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处如图所示,故选D【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解2、A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=故选A点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键3、C【解析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值【详解】400×人.故选C【点睛】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值4、A【解析】试题解析:扇形的弧长为:=20cm,圆锥底面半径为20÷2=10cm,故选A考点:圆锥的计算5、C【解析】连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可【详解】解:连接AE,AC=3,cosCAB=,AB=3AC=9,由勾股定理得,BC=6,ACB=90°,点D为AB的中点,CD=AB=,SABC=×3×6=9,点D为AB的中点,SACD=SABC=,由翻转变换的性质可知,S四边形ACED=9,AECD,则×CD×AE=9,解得,AE=4,AF=2,由勾股定理得,DF=,AF=FE,AD=DB,BE=2DF=7,故选C【点睛】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等6、B【解析】直接利用有理化因式的定义分析得出答案【详解】()(,)=122,=10,与互为有理化因式的是:,故选B【点睛】本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.7、D【解析】直接利用提取公因式法以及公式法分解因式,进而判断即可【详解】解:A、,无法直接分解因式,故此选项错误;B、,无法直接分解因式,故此选项错误;C、,无法直接分解因式,故此选项错误;D、,正确故选:D【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键8、C【解析】解:A此图形不是轴对称图形,不合题意;B此图形不是轴对称图形,不合题意;C此图形是轴对称图形,符合题意;D此图形不是轴对称图形,不合题意故选C9、A【解析】根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:A、xx4=x5,原式计算正确,故本选项正确;B、x6÷x3=x3,原式计算错误,故本选项错误;C、3x2x2=2x2,原式计算错误,故本选项错误;D、(2x2)3=8x,原式计算错误,故本选项错误故选A10、C【解析】解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=2,解得a=0,符合排列顺序(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=2,解得a=0,不符合排列顺序(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=a,解得a=2.5,符合排列顺序(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=1,解得a=5,不符合排列顺序(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,a不可能是1故选C【点睛】本题考查中位数;算术平均数11、D【解析】根据k0,k0,结合两个函数的图象及其性质分类讨论【详解】分两种情况讨论:当k0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;当k0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符分析可得:它们在同一直角坐标系中的图象大致是D故选D【点睛】本题主要考查二次函数、反比例函数的图象特点12、D【解析】根据点M(a,2a)在反比例函数y的图象上,可得:,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y的图象上,可得:,解得:,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.二、填空题:(本大题共6个小题,每小题4分,共24分)13、45°【解析】试题解析:如图,连接CE,AB=2,BC=1,DE=EF=1,CD=GF=2,在CDE和GFE中CDEGFE(SAS),CE=GE,CED=GEF,故答案为14、【解析】根据平行线的性质以及等边三角形的性质即可求出答案【详解】由题意可知:A=30°,AB=2BC,故错误;l1l2,CDB=1=60°CBD=60°,BCD是等边三角形,故正确;BCD是等边三角形,BCD=60°,ACD=A=30°,AD=CD=BD,故正确故答案为【点睛】本题考查了平行的性质以及等边三角形的性质,解题的关键是熟练运用平行线的性质,等边三角形的性质,含30度角的直角三角形的性质,本题属于中等题型15、【解析】根据概率的公式进行计算即可.【详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.故答案为:.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.16、乙【解析】据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可得出答案【详解】解:S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,S乙2S丁2S甲2S丙2,二月份白菜价格最稳定的市场是乙;故答案为:乙【点睛】本题考查方差的意义解题关键是掌握方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定17、1【解析】本题考查了统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个【详解】在这一组数据中1是出现次数最多的,故众数是1故答案为1【点睛】本题为统计题,考查了众数的定义,是基础题型18、;【解析】设第一天走了x里,则第二天走了里,第三天走了里第六天走了里,根据总路程为378里列出方程可得答案.【详解】解:设第一天走了x里, 则第二天走了里,第三天走了里第六天走了里,依题意得:,故答案:.【点睛】本题主要考查由实际问题抽象出一元一次方程.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)3;(2);(3)【解析】设塔的顶层共有盏灯,根据题意列出方程,进行解答即可.参照题目中的解题方法进行计算即可.由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂只需将-2-n消去即可,分别分别即可求得N的值【详解】设塔的顶层共有盏灯,由题意得.解得,顶层共有盏灯.设, ,即: .即由题意可知:20第一项,20,21第二项,20,21,22第三项,20,21,22,2n1第n项,根据等比数列前n项和公式,求得每项和分别为: 每项含有的项数为:1,2,3,n,总共的项数为 所有项数的和为 由题意可知:为2的整数幂,只需将2n消去即可,则1+2+(2n)=0,解得:n=1,总共有,不满足N>10,1+2+4+(2n)=0,解得:n=5,总共有 满足,1+2+4+8+(2n)=0,解得:n=13,总共有 满足,1+2+4+8+16+(2n)=0,解得:n=29,总共有 不满足,【点睛】考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.20、(1)10米;(2)11.4米【解析】(1)延长DC交AN于H只要证明BC=CD即可;(2)在RtBCH中,求出BH、CH,在 RtADH中求出AH即可解决问题.【详解】(1)如图,延长DC交AN于H,DBH=60°,DHB=90°,BDH=30°,CBH=30°,CBD=BDC=30°,BC=CD=10(米);(2)在RtBCH中,CH=BC=5,BH=58.65,DH=15,在RtADH中,AH=20,AB=AHBH=208.65=11.4(米)【点睛】本题考查解直角三角形的应用坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.21、【解析】试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD,再由AOB=60°可得AOB是等边三角形,从而得到OB=OA=2,则BD=4,最后在RtABD中,由勾股定理可解得AD的长.试题解析:四边形ABCD是矩形,OA=OB=OD,BAD=90°,AOB=60°,AOB是等边三角形,OB=OA=2, BD=2OB=4,在RtABD中AD=.22、20千米【解析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10x,将DA=8,CB=2代入关系式即可求得【详解】解:设基地E应建在离A站x千米的地方则BE=(50x)千米在RtADE中,根据勾股定理得:AD2+AE2=DE2302+x2=DE2在RtCBE中,根据勾股定理得:CB2+BE2=CE2202+(50x)2=CE2又C、D两村到E点的距离相等DE=CEDE2=CE2302+x2=202+(50x)2解得x=20基地E应建在离A站20千米的地方考点:勾股定理的应用23、(1);(2)的值为【解析】(1)利用判别式的意义得到,然后解不等式即可;(2)利用(1)中的结论得到的最大整数为2,解方程解得,把和分别代入一元二次方程求出对应的,同时满足【详解】解:(1)根据题意得,解得;(2)的最大整数为2,方程变形为,解得,一元二次方程与方程有一个相同的根,当时,解得;当时,解得,而,的值为【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根24、(1);(2)【解析】【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.【详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是.(2)因为直线y=kx+b经过一、二、三象限,所以k>0,b>0,又因为取情况:k b1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是.【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .25、(1)证明过程见解析;(2)1.【解析】试题分析:(1)连接OD,由CD是O切线,得到ODC=90°,根据AB为O的直径,得到ADB=90°,等量代换得到BDC=ADO,根据等腰直角三角形的性质得到ADO=A,即可得到结论;(2)根据垂直的定义得到E=ADB=90°,根据平行线的性质得到DCE=BDC,根据相似三角形的性质得到,解方程即可得到结论试题解析:(1)连接OD, CD是O切线, ODC=90°, 即ODB+BDC=90°,AB为O的直径, ADB=90°, 即ODB+ADO=90°, BDC=ADO,OA=OD, ADO=A, BDC=A;(2)CEAE, E=ADB=90°, DBEC, DCE=BDC, BDC=A, A=DCE,E=E, AECCED, , EC2=DEAE, 11=2(2+AD), AD=1考点:(1)切线的性质;(2)相似三角形的判定与性质26、1+3【解析】先根据乘方、负指数幂、绝对值、特殊角的三角函数值分别进行计算,然后根据实数的运算法则求得计算结果【详解】16+()2|2|+2tan60°=1+4(2)+2,=1+42+2,=1+3【点睛】本题主要考查了实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算法则27、(1);(2).【解析】(1)原式=1×=1=;(2)原式=×+×=【点睛】本题考查特殊角的三角函数值,熟练掌握每个特殊角的三角函数值是解此题的关键.