2023届江西省永新县中考联考数学试卷含解析.doc
-
资源ID:87838935
资源大小:788KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届江西省永新县中考联考数学试卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若直线y=kx+b图象如图所示,则直线y=bx+k的图象大致是( )ABCD2把四张形状大小完全相同的小长方形卡片(如图)不重叠地放在一个底面为长方形(长为宽为)的盒子底部(如图),盒子底面未被卡片覆盖的部分用阴影表示则图中两块阴影部分周长和是( )ABCD3如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为A6B8C10D124计算 的结果是( )Aa2B-a2Ca4D-a45下列四个图案中,不是轴对称图案的是()ABCD6如图,四边形ABCD中,ACBC,ADBC,BC3,AC4,AD1M是BD的中点,则CM的长为()AB2CD37如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1y2,取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.下列判断: 当x2时,M=y2;当x0时,x值越大,M值越大;使得M大于4的x值不存在;若M=2,则x=" 1" .其中正确的有 A1个B2个C3个D4个8如图,平行四边形ABCD的顶点A、B、D在O上,顶点C在O直径BE上,连结AE,若E=36°,则ADC的度数是( )A44°B53°C72°D54°9如图,在RtABC中,BAC90°,ABAC,ADBC,垂足为D、E,F分别是CD,AD上的点,且CEAF.如果AED62°,那么DBF的度数为()A62°B38°C28°D26°10如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:ac1;a+b=1;4acb2=4a;a+b+c1其中正确结论的个数是()A1 B2 C3 D411如图,圆O是等边三角形内切圆,则BOC的度数是()A60°B100°C110°D120°12用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13分式方程的解为_14如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为 15如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k0)的图象上与正方形的一个交点若图中阴影部分的面积等于9,则这个反比例函数的解析式为 16在平面直角坐标系中,若点P(2x6,5x)在第四象限,则x的取值范围是_;17已知,如图,ABC中,DEFGBC,ADDFFB123,若EG3,则AC 18规定:,如:,若,则_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造如图,为体育馆改造的截面示意图已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角EFG为37°若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由(参考数据:sin37°,tan37°)20(6分)如图,在ABC中,C=90°,BC4,AC1点P是斜边AB上一点,过点P作PMAB交边AC或BC于点M又过点P作AC的平行线,与过点M的PM的垂线交于点N设边APx,PMN与ABC重合部分图形的周长为y(1)AB (2)当点N在边BC上时,x (1)求y与x之间的函数关系式(4)在点N位于BC上方的条件下,直接写出过点N与ABC一个顶点的直线平分ABC面积时x的值21(6分)计算:(2)3+(3)×(4)2+2(3)2÷(2)22(8分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据1.732)23(8分)求抛物线y=x2+x2与x轴的交点坐标24(10分)如图,AB为O直径,过O外的点D作DEOA于点E,射线DC切O于点C、交AB的延长线于点P,连接AC交DE于点F,作CHAB于点H(1)求证:D=2A;(2)若HB=2,cosD=,请求出AC的长25(10分)如图,在四边形ABCD中,ABC90°,AB3,BC4,CD10,DA5,求BD的长26(12分)如图,已知RtABC中,C=90°,D为BC的中点,以AC为直径的O交AB于点E(1)求证:DE是O的切线;(2)若AE:EB=1:2,BC=6,求O的半径27(12分)某校园图书馆添置新书,用240元购进一种科普书,同时用200元购进一种文学书,由于科普书的单价比文学书的价格高出一半,因此,学校所购文学书比科普书多4本,求:(1)这两种书的单价(2)若两种书籍共买56本,总费用不超过696元,则最多买科普书多少本?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】根据一次函数y=kx+b的图象可知k1,b1,再根据k,b的取值范围确定一次函数y=bx+k图象在坐标平面内的位置关系,即可判断【详解】解:一次函数y=kx+b的图象可知k1,b1,-b1,一次函数y=bx+k的图象过一、二、三象限,与y轴的正半轴相交,故选:A【点睛】本题考查了一次函数的图象与系数的关系函数值y随x的增大而减小k1;函数值y随x的增大而增大k1;一次函数y=kx+b图象与y轴的正半轴相交b1,一次函数y=kx+b图象与y轴的负半轴相交b1,一次函数y=kx+b图象过原点b=12、D【解析】根据题意列出关系式,去括号合并即可得到结果【详解】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=a,则图中两块阴影部分周长和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键3、C【解析】连接AD,由于ABC是等腰三角形,点D是BC边的中点,故ADBC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论【详解】连接AD,ABC是等腰三角形,点D是BC边的中点,ADBC,SABC=BCAD=×4×AD=16,解得AD=8,EF是线段AC的垂直平分线,点C关于直线EF的对称点为点A,AD的长为CM+MD的最小值,CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1故选C【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键4、D【解析】直接利用同底数幂的乘法运算法则计算得出答案【详解】解:,故选D【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键5、B【解析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误故选:B【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.6、C【解析】延长BC 到E 使BEAD,利用中点的性质得到CM DEAB,再利用勾股定理进行计算即可解答.【详解】解:延长BC 到E 使BEAD,BC/AD,四边形ACED是平行四边形,DE=AB,BC3,AD1,C是BE的中点,M是BD的中点,CM DEAB,ACBC,AB,CM ,故选:C【点睛】此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.7、B【解析】试题分析:当y1=y2时,即时,解得:x=0或x=2,由函数图象可以得出当x2时, y2y1;当0x2时,y1y2;当x0时, y2y1错误当x0时, -直线的值都随x的增大而增大,当x0时,x值越大,M值越大正确抛物线的最大值为4,M大于4的x值不存在正确;当0x2时,y1y2,当M=2时,2x=2,x=1;当x2时,y2y1,当M=2时,解得(舍去)使得M=2的x值是1或错误综上所述,正确的有2个故选B8、D【解析】根据直径所对的圆周角为直角可得BAE=90°,再根据直角三角形的性质和平行四边形的性质可得解.【详解】根据直径所对的圆周角为直角可得BAE=90°,根据E=36°可得B=54°,根据平行四边形的性质可得ADC=B=54°.故选D【点睛】本题考查了平行四边形的性质、圆的基本性质.9、C【解析】分析:主要考查:等腰三角形的三线合一,直角三角形的性质注意:根据斜边和直角边对应相等可以证明BDFADE详解:AB=AC,ADBC,BD=CD 又BAC=90°,BD=AD=CD 又CE=AF,DF=DE,RtBDFRtADE(SAS), DBF=DAE=90°62°=28° 故选C点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键10、C【解析】根据图象知道:a1,c1,ac1,故正确;顶点坐标为(1/2 ,1),x="-b/2a" ="1/2" ,a+b=1,故正确;根据图象知道:x=1时,y=a+b+c1,故错误;顶点坐标为(1/2 ,1),=1,4ac-b2=4a,故正确其中正确的是故选C11、D【解析】由三角形内切定义可知OB、OC是ABC、ACB的角平分线,所以可得到关系式OBC+OCB=(ABC+ACB),把对应数值代入即可求得BOC的值【详解】解:ABC是等边三角形,A=ABC=ACB=60°,圆O是等边三角形内切圆,OB、OC是ABC、ACB的角平分线,OBC+OCB=(ABC+ACB)=(180°60°)=60°,BOC=180°60=120°,故选D【点睛】此题主要考查了三角形的内切圆与内心以及切线的性质关键是要知道关系式OBC+OCB=(ABC+ACB)12、D【解析】分析:根据主视图和俯视图之间的关系可以得出答案详解: 主视图和俯视图的长要相等, 只有D选项中的长和俯视图不相等,故选D点睛:本题主要考查的就是三视图的画法,属于基础题型三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等二、填空题:(本大题共6个小题,每小题4分,共24分)13、-1【解析】【分析】先去分母,化为整式方程,然后再进行检验即可得.【详解】两边同乘(x+2)(x-2),得:x-23x=0,解得:x=-1,检验:当x=-1时,(x+2)(x-2)0,所以x=-1是分式方程的解,故答案为:-1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.14、【解析】试题分析:此题是求阴影部分的面积占正方形面积的几分之几,即为所求概率阴影部分的面积为:3×1÷2×4=6,因为正方形对角线形成4个等腰直角三角形,所以边长是=,这个点取在阴影部分的概率为:6÷=6÷18=考点:求随机事件的概率15、【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:反比例函数的图象关于原点对称,阴影部分的面积和正好为小正方形的面积设正方形的边长为b,则b2=9,解得b=3正方形的中心在原点O,直线AB的解析式为:x=2点P(2a,a)在直线AB上,2a=2,解得a=3P(2,3)点P在反比例函数(k0)的图象上,k=2×3=2此反比例函数的解析式为:16、3x1【解析】根据第四象限内横坐标为正,纵坐标为负可得出答案.【详解】点P(2x-6,x-5)在第四象限, 解得-3x1故答案为-3x1.【点睛】本题考查了点的坐标、一元一次不等式组,解题的关键是知道平面直角坐标系中第四象限横、纵坐标的符号.17、1【解析】试题分析:根据DEFGBC可得ADEAFGABC,根据题意可得EG:AC=DF:AB=2:6=1:3,根据EG=3,则AC=1考点:三角形相似的应用18、1或-1【解析】根据ab=(a+b)b,列出关于x的方程(2+x)x=1,解方程即可【详解】依题意得:(2+x)x=1,整理,得 x2+2x=1,所以 (x+1)2=4,所以x+1=±2,所以x=1或x=-1故答案是:1或-1【点睛】用配方法解一元二次方程的步骤:把原方程化为ax2+bx+c=0(a0)的形式;方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;方程两边同时加上一次项系数一半的平方;把左边配成一个完全平方式,右边化为一个常数;如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、不满足安全要求,理由见解析【解析】在RtABC中,由ACB=90°,AC=15m,ABC=45°可求得BC=15m;在RtEGD中,由EGD=90°,EG=15m,EFG=37°,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“设计方案不满足安全要求”.【详解】解:施工方提供的设计方案不满足安全要求,理由如下:在RtABC中,AC=15m,ABC=45°,BC=15m在RtEFG中,EG=15m,EFG=37°,GF=20mEG=AC=15m,ACBC,EGBC,EGAC,四边形EGCA是矩形,GC=EA=2m,DF=GC+BC+BD-GF=2+15+5-20=2<2.5.施工方提供的设计方案不满足安全要求20、(1)2;(2);(1)详见解析;(4)满足条件的x的值为【解析】(1)根据勾股定理可以直接求出(2)先证明四边形PAMN是平行四边形,再根据三角函数值求解(1)分情况根据t的大小求出不同的函数关系式(4)不同条件下:当点G是AC中点时和当点D是AB中点时,根据相似三角形的性质求解.【详解】解:(1)在中,,故答案为2(2)如图1中,四边形PAMN是平行四边形, 当点在上时,(1)当时,如图1, 当时,如图2, y当时,如图1,(4)如图4中,当点是中点时,满足条件 .如图2中,当点是中点时,满足条件 .综上所述,满足条件的x的值为或【点睛】此题重点考查学生对一次函数的应用,勾股定理,平行四边形的判定,相似三角形的性质和三角函数值的综合应用能力,熟练掌握勾股定理和三角函数值的解法是解题的关键.21、-17.1【解析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的【详解】解:原式8+(3)×189÷(2),8149÷(2),62+4.1,17.1【点睛】此题要注意正确掌握运算顺序以及符号的处理22、隧道最短为1093米【解析】【分析】作BDAC于D,利用直角三角形的性质和三角函数解答即可【详解】如图,作BDAC于D,由题意可得:BD=14001000=400(米),BAC=30°,BCA=45°,在RtABD中,tan30°=,即,AD=400(米),在RtBCD中,tan45°=,即,CD=400(米),AC=AD+CD=400+4001092.81093(米),答:隧道最短为1093米【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.23、(1,0)、(2,0)【解析】试题分析:抛物线与x轴交点的纵坐标等于零,由此解答即可试题解析:解:令,即解得:,该抛物线与轴的交点坐标为(2,0),(1,0)24、(1)证明见解析;(2)AC=4.【解析】(1)连接,根据切线的性质得到,根据垂直的定义得到,得到,然后根据圆周角定理证明即可;(2)设的半径为,根据余弦的定义、勾股定理计算即可【详解】(1)连接射线切于点,由圆周角定理得:,;(2)由(1)可知:,设的半径为,则,在中,由勾股定理可知:,在中,由勾股定理可知:【点睛】本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键25、BD2.【解析】作DMBC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出ACD是直角三角形,ACD=90°,证出ACB=CDM,得出ABCCMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可【详解】作DMBC,交BC延长线于M,连接AC,如图所示:则M90°,DCM+CDM90°,ABC90°,AB3,BC4,AC2AB2+BC225,CD10,AD ,AC2+CD2AD2,ACD是直角三角形,ACD90°,ACB+DCM90°,ACBCDM,ABCM90°,ABCCMD,CM2AB6,DM2BC8,BMBC+CM10,BD,【点睛】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出ACD是直角三角形是解决问题的关键26、(1)证明见解析;(1) 【解析】试题分析:(1)求出OED=BCA=90°,根据切线的判定即可得出结论;(1)求出BECBCA,得出比例式,代入求出即可试题解析:(1)证明:连接OE、ECAC是O的直径,AEC=BEC=90°D为BC的中点,ED=DC=BD,1=1OE=OC,3=4,1+3=1+4,即OED=ACBACB=90°,OED=90°,DE是O的切线;(1)由(1)知:BEC=90°在RtBEC与RtBCA中,B=B,BEC=BCA,BECBCA,BE:BC=BC:BA,BC1=BEBAAE:EB=1:1,设AE=x,则BE=1x,BA=3xBC=6,61=1x3x,解得:x=,即AE=,AB=,AC=,O的半径=点睛:本题考查了切线的判定和相似三角形的性质和判定,能求出OED=BCA和BECBCA是解答此题的关键27、(1)文学书的单价为10元,则科普书的单价为15元;(2)27本【解析】(1)根据等量关系:文学书数量科普书数量4本可以列出方程,解方程即可(2)根据题意列出不等式解答即可【详解】(1)设文学书的单价为x元,则科普书的单价为1.5x元,根据题意得:=4, 解得:x10,经检验:x10是原方程的解,1.5x15,答:文学书的单价为10元,则科普书的单价为15元(2)设最多买科普书m本,可得:15m+10(56m)696,解得:m27.2,最多买科普书27本【点睛】此题考查分式方程的实际应用,不等式的实际应用,正确理解题意列出方程或是不等式是解题的关键.