2023届江西省宜春市丰城四中学中考数学最后一模试卷含解析.doc
-
资源ID:87838945
资源大小:936KB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届江西省宜春市丰城四中学中考数学最后一模试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1PM2.5是指大气中直径0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A2.5×107B2.5×106C25×107D0.25×1052如图所示,二次函数y=ax2+bx+c(a0)的图象经过点(1,2),且与x轴交点的横坐标分别为x1、x2,其中2x11,0x21下列结论:4a2b+c0;2ab0;abc0;b2+8a4ac其中正确的结论有()A1个B2个C3个D4个3若ABCABC,A=40°,C=110°,则B等于( )A30°B50°C40°D70°4对于非零的两个实数、,规定,若,则的值为( )ABCD5要使分式有意义,则x的取值应满足( )Ax=2Bx2Cx2Dx26在RtABC中,ACB=90°,AC=12,BC=9,D是AB的中点,G是ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是()Ar5Br5Cr10D5r107如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )ABCD8若关于x的一元二次方程x22x+m0没有实数根,则实数m的取值是( )Am1Bm1Cm1Dm19化简的结果是( )A±4B4C2D±210在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为( )ABCD11下列方程有实数根的是( )ABCx+2x1=0D12下列解方程去分母正确的是( )A由,得2x133xB由,得2x2x4C由,得2y-15=3yD由,得3(y+1)2y+6二、填空题:(本大题共6个小题,每小题4分,共24分)13已知A(x1,y1),B(x2,y2)都在反比例函数y的图象上若x1x24,则y1y2的值为_14如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把ABC沿着AD方向平移,得到ABC,当两个三角形重叠部分的面积为32时,它移动的距离AA等于_.15如图,在ABC中,AD、BE分别是BC、AC两边中线,则=_16经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是_17如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_18A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为_千米三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)求抛物线y=x2+x2与x轴的交点坐标20(6分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题已知,ABC中,ABAC,BAC,点D、E在边BC上,且DAE(1)如图1,当60°时,将AEC绕点A顺时针旋转60°到AFB的位置,连接DF,求DAF的度数;求证:ADEADF;(2)如图2,当90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当120°,BD4,CE5时,请直接写出DE的长为 21(6分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.22(8分)如图,曲线BC是反比例函数y(4x6)的一部分,其中B(4,1m),C(6,m),抛物线yx2+2bx的顶点记作A(1)求k的值(2)判断点A是否可与点B重合;(3)若抛物线与BC有交点,求b的取值范围23(8分)如图,在RtABC中,C=90°,翻折C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)若CEF与ABC相似当AC=BC=2时,AD的长为 ;当AC=3,BC=4时,AD的长为 ;当点D是AB的中点时,CEF与ABC相似吗?请说明理由24(10分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、表示;田赛项目:跳远,跳高分别用、表示该同学从5个项目中任选一个,恰好是田赛项目的概率为_;该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率25(10分)山地自行车越来越受中学生的喜爱一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?26(12分)如图,在平面直角坐标系xOy中,直线与双曲线(x>0)交于点求a,k的值;已知直线过点且平行于直线,点P(m,n)(m>3)是直线上一动点,过点P分别作轴、轴的平行线,交双曲线(x>0)于点、,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为横、纵坐标都是整数的点叫做整点当时,直接写出区域内的整点个数;若区域内的整点个数不超过8个,结合图象,求m的取值范围27(12分)如图,O是RtABC的外接圆,C=90°,tanB=,过点B的直线l是O的切线,点D是直线l上一点,过点D作DECB交CB延长线于点E,连接AD,交O于点F,连接BF、CD交于点G(1)求证:ACBBED;(2)当ADAC时,求 的值;(3)若CD平分ACB,AC=2,连接CF,求线段CF的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000 0025=2.5×106;故选B【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定2、C【解析】首先根据抛物线的开口方向可得到a0,抛物线交y轴于正半轴,则c0,而抛物线与x轴的交点中,2x11、0x21说明抛物线的对称轴在10之间,即x=1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【详解】由图知:抛物线的开口向下,则a0;抛物线的对称轴x=1,且c0; 由图可得:当x=2时,y0,即4a2b+c0,故正确; 已知x=1,且a0,所以2ab0,故正确; 抛物线对称轴位于y轴的左侧,则a、b同号,又c0,故abc0,所以不正确; 由于抛物线的对称轴大于1,所以抛物线的顶点纵坐标应该大于2,即:2,由于a0,所以4acb28a,即b2+8a4ac,故正确; 因此正确的结论是 故选:C【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键3、A【解析】利用三角形内角和求B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:B=30°,根据相似三角形的性质可得:B=B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.4、D【解析】试题分析:因为规定,所以,所以x=,经检验x=是分式方程的解,故选D.考点:1.新运算;2.分式方程.5、D【解析】试题分析:分式有意义,x+10,x1,即x的取值应满足:x1故选D考点:分式有意义的条件6、D【解析】延长CD交D于点E,ACB=90°,AC=12,BC=9,AB=15,D是AB中点,CD=,G是ABC的重心,CG=5,DG=2.5,CE=CD+DE=CD+DF=10,C与D相交,C的半径为r, ,故选D.【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.7、C【解析】列表得,120-11(1,1)(1,2)(1,0)(1,-1)2(2,1)(2,2)(2,0)(2,-1)0(0,1)(0,2)(0,0)(0,-1)-1(-1,1)(-1,2)(-1,0)(-1,-1)由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为,故选C.考点:用列表法(或树形图法)求概率.8、C【解析】试题解析:关于的一元二次方程没有实数根,解得:故选C9、B【解析】根据算术平方根的意义求解即可【详解】 4,故选:B【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.10、D【解析】先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可【详解】解:点M的坐标是(4,3),点M到x轴的距离是3,到y轴的距离是4,点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,r的取值范围是3r4,故选:D【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键11、C【解析】分析:根据方程解的定义,一一判断即可解决问题;详解:Ax40,x4+2=0无解;故本选项不符合题意; B0,=1无解,故本选项不符合题意; Cx2+2x1=0,=8=4=120,方程有实数根,故本选项符合题意; D解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意 故选C点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型12、D【解析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可【详解】A由,得:2x633x,此选项错误;B由,得:2x4x4,此选项错误;C由,得:5y153y,此选项错误;D由,得:3( y+1)2y+6,此选项正确故选D【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据反比例函数图象上点的坐标特征得到 再把它们相乘,然后把代入计算即可【详解】根据题意得所以故答案为:1.【点睛】考查反比例函数图象上点的坐标特征,把点的坐标代入反比例函数解析式得到是解题的关键.14、4或8【解析】由平移的性质可知阴影部分为平行四边形,设AD=x,根据题意阴影部分的面积为(12x)×x,即x(12x),当x(12x)=32时,解得:x=4或x=8,所以AA=8或AA=4。【详解】设AA=x,AC与AB相交于点E,ACD是正方形ABCD剪开得到的,ACD是等腰直角三角形,A=45,AAE是等腰直角三角形,AE=AA=x,AD=ADAA=12x,两个三角形重叠部分的面积为32,x(12x)=32,整理得,x12x+32=0,解得x=4,x=8,即移动的距离AA等4或8.【点睛】本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.15、 【解析】利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;【详解】AE=EC,BD=CD,DEAB,DE=AB,EDCABC,故答案是:【点睛】考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理16、【解析】根据题意,画出树状图,然后根据树状图和概率公式求概率即可【详解】解:画树状图得:共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,至少有一辆汽车向左转的概率是:故答案为:【点睛】此题考查的是求概率问题,掌握树状图的画法和概率公式是解决此题的关键17、【解析】解:如图,作OHDK于H,连接OK,以AD为直径的半圆,正好与对边BC相切,AD=2CD根据折叠对称的性质,A'D=2CDC=90°,DA'C=30°ODH=30°DOH=60°DOK=120°扇形ODK的面积为ODH=OKH=30°,OD=3cm,ODK的面积为半圆还露在外面的部分(阴影部分)的面积是:故答案为:18、【解析】根据题意和函数图象可以分别求得甲乙的速度,从而可以得到当甲第二次与乙相遇时,乙离B地的距离【详解】设甲的速度为akm/h,乙的速度为bkm/h, ,解得,设第二次甲追上乙的时间为m小时,100m25(m1)=600,解得,m=,当甲第二次与乙相遇时,乙离B地的距离为:25×(-1)=千米,故答案为【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1,0)、(2,0)【解析】试题分析:抛物线与x轴交点的纵坐标等于零,由此解答即可试题解析:解:令,即解得:,该抛物线与轴的交点坐标为(2,0),(1,0)20、(1)30°见解析(2)BD2+CE2DE2(3)【解析】(1)利用旋转的性质得出FAB=CAE,再用角的和即可得出结论;利用SAS判断出ADEADF,即可得出结论;(2)先判断出BF=CE,ABF=ACB,再判断出DBF=90°,即可得出结论;(3)同(2)的方法判断出DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论【详解】解:(1)由旋转得,FABCAE,BAD+CAEBACDAE60°30°30°,DAFBAD+BAFBAD+CAE30°;由旋转知,AFAE,BAFCAE,BAF+BADCAE+BADBACDAEDAE,在ADE和ADF中,ADEADF(SAS);(2)BD2+CE2DE2,理由:如图2,将AEC绕点A顺时针旋转90°到AFB的位置,连接DF,BFCE,ABFACB,由(1)知,ADEADF,DEDF,ABAC,BAC90°,ABCACB45°,DBFABC+ABFABC+ACB90°,根据勾股定理得,BD2+BF2DF2,即:BD2+CE2DE2;(3)如图3,将AEC绕点A顺时针旋转90°到AFB的位置,连接DF,BFCE,ABFACB,由(1)知,ADEADF,DEDF,BFCE5,ABAC,BAC90°,ABCACB30°,DBFABC+ABFABC+ACB60°,过点F作FMBC于M,在RtBMF中,BFM90°DBF30°,BF5,BD4,DMBDBM,根据勾股定理得, ,DEDF,故答案为【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键21、1m【解析】连接AN、BQ,过B作BEAN于点E在RtAMN和在RtBMQ中,根据三角函数就可以求得AN,BQ,求得NQ,AE的长,在直角ABE中,依据勾股定理即可求得AB的长【详解】连接AN、BQ,点A在点N的正北方向,点B在点Q的正北方向,ANl,BQl,在RtAMN中:tanAMN=,AN=1,在RtBMQ中:tanBMQ=,BQ=30,过B作BEAN于点E,则BE=NQ=30,AE=AN-BQ=30,在RtABE中,AB2=AE2+BE2,AB2(30)2+302,AB=1答:湖中两个小亭A、B之间的距离为1米【点睛】本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题22、(1)12;(2)点A不与点B重合;(3)【解析】(1)把B、C两点代入解析式,得到k4(1m)6×(m),求得m2,从而求得k的值;(2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b4,且b23,显然不成立;(3)当抛物线经过点B(4,3)时,解得,b ,抛物线右半支经过点B;当抛物线经过点C,解得,b,抛物线右半支经过点C;从而求得b的取值范围为b【详解】解:(1)B(4,1m),C(6,m)在反比例函数 的图象上,k4(1m)6×(m),解得m2,k4×1(2)12;(2)m2,B(4,3),抛物线yx2+2bx(xb)2+b2,A(b,b2)若点A与点B重合,则有b4,且b23,显然不成立,点A不与点B重合;(3)当抛物线经过点B(4,3)时,有342+2b×4,解得,b, 显然抛物线右半支经过点B;当抛物线经过点C(6,2)时,有262+2b×6,解得,b,这时仍然是抛物线右半支经过点C,b的取值范围为b【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题23、解:(1)或(2)当点D是AB的中点时,CEF与ABC相似理由见解析.【解析】(1)当AC=BC=2时,ABC为等腰直角三角形;若CEF与ABC相似,分两种情况:若CE:CF=3:4,如图1所示,此时EFAB,CD为AB边上的高;若CF:CE=3:4,如图2所示由相似三角形角之间的关系,可以推出A=ECD与B=FCD,从而得到CD=AD=BD,即D点为AB的中点;(2)当点D是AB的中点时,CEF与ABC相似可以推出CFE=A,C=C,从而可以证明两个三角形相似【详解】(1)若CEF与ABC相似当AC=BC=2时,ABC为等腰直角三角形,如答图1所示,此时D为AB边中点,AD=AC=当AC=3,BC=4时,有两种情况:(I)若CE:CF=3:4,如答图2所示,CE:CF=AC:BC,EFBC由折叠性质可知,CDEF,CDAB,即此时CD为AB边上的高在RtABC中,AC=3,BC=4,BC=1cosA=AD=ACcosA=3×=(II)若CF:CE=3:4,如答图3所示CEFCAB,CEF=B由折叠性质可知,CEF+ECD=90°又A+B=90°,A=ECD,AD=CD同理可得:B=FCD,CD=BDAD=BD此时AD=AB=×1=综上所述,当AC=3,BC=4时,AD的长为或(2)当点D是AB的中点时,CEF与CBA相似理由如下:如图所示,连接CD,与EF交于点QCD是RtABC的中线CD=DB=AB,DCB=B由折叠性质可知,CQF=DQF=90°,DCB+CFE=90°,B+A=90°,CFE=A,又ACB=ACB,CEFCBA24、 (1);(2).【解析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案【详解】(1)5个项目中田赛项目有2个,该同学从5个项目中任选一个,恰好是田赛项目的概率为:故答案为;(2)画树状图得:共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,恰好是一个田赛项目和一个径赛项目的概率为:【点睛】本题考查了用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比25、(1)二月份每辆车售价是900元;(2)每辆山地自行车的进价是600元【解析】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每辆山地自行车的进价为y元,根据利润=售价进价,即可得出关于y的一元一次方程,解之即可得出结论【详解】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据题意得:,解得:x=900,经检验,x=900是原分式方程的解,答:二月份每辆车售价是900元;(2)设每辆山地自行车的进价为y元,根据题意得:900×(110%)y=35%y,解得:y=600,答:每辆山地自行车的进价是600元【点睛】本题考查了分式方程的应用、一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.26、(1),;(2) 3, .【解析】(1)将代入可求出a,将A点坐标代入可求出k;(2)根据题意画出函数图像,可直接写出区域内的整点个数;求出直线的表达式为,根据图像可得到两种极限情况,求出对应的m的取值范围即可.【详解】解:(1)将代入得a=4将代入,得(2)区域内的整点个数是3直线是过点且平行于直线直线的表达式为当时,即线段PM上有整点 【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.27、(1)详见解析;(2) ;(3).【解析】(1)只要证明ACB=E,ABC=BDE即可;(2)首先证明BE:DE:BC=1:2:4,由GCBGDF,可得=;(3)想办法证明AB垂直平分CF即可解决问题.【详解】(1)证明:如图1中,DECB,ACB=E=90°,BD是切线,ABBD,ABD=90°,ABC+DBE=90°,BDE+DBE=90°,ABC=BDE,ACBBED;(2)解:如图2中,ACBBED;四边形ACED是矩形,BE:DE:BC=1:2:4,DFBC,GCBGDF,=;(3)解:如图3中,tanABC=,AC=2,BC=4,BE=4,DE=8,AB=2,BD=4,易证DBEDBF,可得BF=4=BC,AC=AF=2,CFAB,设CF交AB于H,则CF=2CH=2×.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型