2023届湖南省常德市芷兰实验校中考数学最后一模试卷含解析.doc
-
资源ID:87838982
资源大小:1,018KB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届湖南省常德市芷兰实验校中考数学最后一模试卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1民族图案是数学文化中的一块瑰宝下列图案中,既不是中心对称图形也不是轴对称图形的是( )ABCD2已知x2-2x-3=0,则2x2-4x的值为( )A-6B6C-2或6D-2或303互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A120元B100元C80元D60元4小明解方程的过程如下,他的解答过程中从第()步开始出现错误解:去分母,得1(x2)1去括号,得1x+21合并同类项,得x+31移项,得x2系数化为1,得x2ABCD5一次函数y1kx+12k(k0)的图象记作G1,一次函数y22x+3(1x2)的图象记作G2,对于这两个图象,有以下几种说法:当G1与G2有公共点时,y1随x增大而减小;当G1与G2没有公共点时,y1随x增大而增大;当k2时,G1与G2平行,且平行线之间的距离为下列选项中,描述准确的是()A正确,错误B正确,错误C正确,错误D都正确6如图,已知ABC的三个顶点均在格点上,则cosA的值为( )ABCD7三个等边三角形的摆放位置如图,若360°,则12的度数为( ) A90°B120°C270°D360°8若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A12B14C15D259小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 , 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x5,于是,他很快便补好了这个常数,并迅速地做完了作业。同学们,你能补出这个常数吗?它应该是( )A2 B3 C4 D510如图,将周长为8的ABC沿BC方向平移1个单位长度得到,则四边形的周长为( )A8B10C12D16二、填空题(共7小题,每小题3分,满分21分)11某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 _元。12如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF,连接CE,CF,则CEF周长的最小值为_13如图,ABC中,AD是中线,BC=8,B=DAC,则线段 的长为_14边长分别为a和2a的两个正方形按如图的样式摆放,则图中阴影部分的面积为_.15如图,RtABC中,BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为_16已知圆锥的底面半径为40cm, 母线长为90cm, 则它的侧面展开图的圆心角为_17如图,在正方形中,对角线与相交于点,为上一点,为的中点若的周长为18,则的长为_三、解答题(共7小题,满分69分)18(10分)给出如下定义:对于O的弦MN和O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当MPN+MON180°时,则称点P是线段MN关于点O的关联点图1是点P为线段MN关于点O的关联点的示意图在平面直角坐标系xOy中,O的半径为1(1)如图2,已知M(,),N(,),在A(1,0),B(1,1),C(,0)三点中,是线段MN关于点O的关联点的是 ;(2)如图3,M(0,1),N(,),点D是线段MN关于点O的关联点MDN的大小为 ;在第一象限内有一点E(m,m),点E是线段MN关于点O的关联点,判断MNE的形状,并直接写出点E的坐标;点F在直线yx+2上,当MFNMDN时,求点F的横坐标x的取值范围19(5分)已知关于x的方程.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.20(8分)解方程组:21(10分)如图,AB是O的直径,点F,C是O上两点,且,连接AC,AF,过点C作CDAF交AF延长线于点D,垂足为D(1)求证:CD是O的切线;(2)若CD=2,求O的半径 22(10分)解不等式组,并将它的解集在数轴上表示出来23(12分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.求,的值;求四边形的面积.24(14分)如图,在RtABC的顶点A、B在x轴上,点C在y轴上正半轴上,且A(1,0),B(4,0),ACB90°.(1)求过A、B、C三点的抛物线解析式;(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与AOC相似,求P点的坐标;(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.图1 备用图参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误故选C2、B【解析】方程两边同时乘以2,再化出2x2-4x求值解:x2-2x-3=02×(x2-2x-3)=02×(x2-2x)-6=02x2-4x=6故选B3、C【解析】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=1该商品的进价为1元/件故选C4、A【解析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题【详解】=1,去分母,得1-(x-2)=x,故错误,故选A【点睛】本题考查解分式方程,解答本题的关键是明确解分式方程的方法5、D【解析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答【详解】解:一次函数y22x+3(1x2)的函数值随x的增大而增大,如图所示,N(1,2),Q(2,7)为G2的两个临界点,易知一次函数y1kx+12k(k0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k0时,此时y1随x增大而增大,符合题意,故正确;当k2时,G1与G2平行正确,过点M作MPNQ,则MN3,由y22x+3,且MNx轴,可知,tanPNM2,PM2PN,由勾股定理得:PN2+PM2MN2(2PN)2+(PN)29,PN,PM. 故正确综上,故选:D【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大6、D【解析】过B点作BDAC,如图,由勾股定理得,AB=,AD=,cosA=,故选D7、B【解析】先根据图中是三个等边三角形可知三角形各内角等于60°,用1,2,3表示出ABC各角的度数,再根据三角形内角和定理即可得出结论【详解】图中是三个等边三角形,3=60°,ABC=180°-60°-60°=60°,ACB=180°-60°-2=120°-2,BAC=180°-60°-1=120°-1,ABC+ACB+BAC=180°,60°+(120°-2)+(120°-1)=180°,1+2=120°故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键8、C【解析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】三角形的两边长分别为5和7,2<第三条边<12,5+7+2<三角形的周长<5+7+12,即14<三角形的周长<24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.9、D【解析】设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可【详解】设这个数是a,把x=1代入得:(-2+1)=1-,1=1-,解得:a=1故选:D【点睛】本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键10、B【解析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案根据题意,将周长为8个单位的ABC沿边BC向右平移1个单位得到DEF,AD=1,BF=BC+CF=BC+1,DF=AC;又AB+BC+AC=8,四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1故选C“点睛”本题考查平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等得到CF=AD,DF=AC是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、500【解析】设该品牌时装的进价为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.【详解】解:设该品牌时装的进价为x元,根据题意得:1000×90%-x=80%x,解得:x=500,则该品牌时装的进价为500元.故答案为:500.【点睛】本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.12、2+4【解析】如图作CHBD,使得CHEF2,连接AH交BD由F,则CEF的周长最小【详解】如图作CHBD,使得CHEF2,连接AH交BD由F,则CEF的周长最小CHEF,CHEF,四边形EFHC是平行四边形,ECFH,FAFC,EC+CFFH+AFAH,四边形ABCD是正方形,ACBD,CHDB,ACCH,ACH90°,在RtACH中,AH4,EFC的周长的最小值2+4,故答案为:2+4【点睛】本题考查轴对称最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题13、【解析】已知BC=8, AD是中线,可得CD=4, 在CBA和CAD中, 由B=DAC,C=C, 可判定CBACAD,根据相似三角形的性质可得 , 即可得AC2=CDBC=4×8=32,解得AC=4. 14、1a1【解析】结合图形,发现:阴影部分的面积=大正方形的面积的+小正方形的面积-直角三角形的面积【详解】阴影部分的面积=大正方形的面积+小正方形的面积-直角三角形的面积=(1a)1+a1-×1a×3a=4a1+a1-3a1=1a1故答案为:1a1【点睛】此题考查了整式的混合运算,关键是列出求阴影部分面积的式子15、【解析】【分析】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AEAC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长,根据相似三角形对应边的比可得结论【详解】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AEAC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长;RtABC中,BAC=90°,AB=3,AC=6,BC=9,SABC=ABAC=BCAF,3×6=9AF,AF=2,AA'=2AF=4,A'FD=DEC=90°,A'DF=CDE,A'=C,AEA'=BAC=90°,AEA'BAC,A'E=,即AD+DE的最小值是,故答案为【点睛】本题考查轴对称最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题.16、【解析】圆锥的底面半径为40cm,则底面圆的周长是80cm,圆锥的底面周长等于侧面展开图的扇形弧长,即侧面展开图的扇形弧长是80cm,母线长为90cm即侧面展开图的扇形的半径长是90cm根据弧长公式即可计算【详解】根据弧长的公式l=得到:80=,解得n=160度侧面展开图的圆心角为160度故答案为160°17、【解析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论【详解】解:四边形是正方形,在中,为的中点,的周长为18,在中,根据勾股定理,得,在中,为的中点,又为的中位线,故答案为:.【点睛】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中三、解答题(共7小题,满分69分)18、(1)C;(2)60;E(,1);点F的横坐标x的取值范围xF【解析】(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件;(2)如图3-1中,作NHx轴于H求出MON的大小即可解决问题;如图3-2中,结论:MNE是等边三角形由MON+MEN=180°,推出M、O、N、E四点共圆,可得MNE=MOE=60°,由此即可解决问题;如图3-3中,由可知,MNE是等边三角形,作MNE的外接圆O,首先证明点E在直线y=-x+2上,设直线交O于E、F,可得F(,),观察图形即可解决问题;【详解】(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件,故答案为C(2)如图3-1中,作NHx轴于HN(,-),tanNOH=,NOH=30°,MON=90°+30°=120°,点D是线段MN关于点O的关联点,MDN+MON=180°,MDN=60°故答案为60°如图3-2中,结论:MNE是等边三角形理由:作EKx轴于KE(,1),tanEOK=,EOK=30°,MOE=60°,MON+MEN=180°,M、O、N、E四点共圆,MNE=MOE=60°,MEN=60°,MEN=MNE=NME=60°,MNE是等边三角形如图3-3中,由可知,MNE是等边三角形,作MNE的外接圆O,易知E(,1),点E在直线y=-x+2上,设直线交O于E、F,可得F(,),观察图象可知满足条件的点F的横坐标x的取值范围xF【点睛】此题考查一次函数综合题,直线与圆的位置关系,等边三角形的判定和性质,锐角三角函数,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题19、(1),;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x1,该方程的一个根为1,.解得.a的值为,该方程的另一根为.(2),不论a取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.20、 【解析】设=a, =b,则原方程组化为,求出方程组的解,再求出原方程组的解即可【详解】设=a, =b,则原方程组化为:,+得:4a=4,解得:a=1,把a=1代入得:1+b=3,解得:b=2,即,解得:,经检验是原方程组的解,所以原方程组的解是【点睛】此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.21、(2)1【解析】试题分析:(1)连结OC,由=,根据圆周角定理得FAC=BAC,而OAC=OCA,则FAC=OCA,可判断OCAF,由于CDAF,所以OCCD,然后根据切线的判定定理得到CD是O的切线;(2)连结BC,由AB为直径得ACB=90°,由=,得BOC=60°,则BAC=30°,所以DAC=30°,在RtADC中,利用含30°的直角三角形三边的关系得AC=2CD=1,在RtACB中,利用含30°的直角三角形三边的关系得BC=AC=1,AB=2BC=8,所以O的半径为1试题解析:(1)证明:连结OC,如图,=FAC=BACOA=OCOAC=OCAFAC=OCAOCAFCDAFOCCDCD是O的切线(2)解:连结BC,如图AB为直径ACB=90°=BOC=×180°=60°BAC=30°DAC=30°在RtADC中,CD=2AC=2CD=1在RtACB中,BC=AC=×1=1AB=2BC=8O的半径为1.考点:圆周角定理, 切线的判定定理,30°的直角三角形三边的关系22、x1,解集表示在数轴上见解析【解析】首先根据不等式的解法求解不等式,然后在数轴上表示出解集【详解】去分母,得:3x2(x1)3,去括号,得:3x2x+23,移项,得:3x2x32,合并同类项,得:x1,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集23、(1),.(2)6【解析】(1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.【详解】解:(1)点在上,点在上,且,.过,两点,解得,.(2)如图,延长,交于点,则.轴,轴,.四边形的面积为6.【点睛】考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.24、见解析【解析】分析:(1)根据求出点的坐标,用待定系数法即可求出抛物线的解析式.(2)分两种情况进行讨论即可.(3)存在. 假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.分当平行四边形是平行四边形时,当平行四边形AONM是平行四边形时,当四边形AMON为平行四边形时,三种情况进行讨论.详解:(1)易证,得, OC=2,C(0,2),抛物线过点A(-1,0),B(4,0)因此可设抛物线的解析式为 将C点(0,2)代入得:,即 抛物线的解析式为 (2)如图2,当时,则P1(,2),当 时, OCl,,P2H·OC5,P2 (,5)因此P点的坐标为(,2)或(,5).(3)存在. 假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.如图3,当平行四边形是平行四边形时,M(,),(,),当平行四边形AONM是平行四边形时,M(,),N(,),如图4,当四边形AMON为平行四边形时,MN与OA互相平分,此时可设M(,m),则 点N在抛物线上,-m-·(-+1)( -4)=-,m=,此时M(,), N(-,-).综上所述,M(,),N(,)或M(,),N(,) 或 M(,), N(-,-).点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.