欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2023届福建省晋江市养正中学中考数学模拟试题含解析.doc

    • 资源ID:87839022       资源大小:795.50KB        全文页数:19页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023届福建省晋江市养正中学中考数学模拟试题含解析.doc

    2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1根据总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为( )A0.6×1010B0.6×1011C6×1010D6×10112下列图形是中心对称图形的是( )ABCD3如图,若ABC内接于半径为R的O,且A60°,连接OB、OC,则边BC的长为()ABCD4如图,已知点 P 是双曲线 y上的一个动点,连结 OP,若将线段OP 绕点 O 逆时针旋转 90°得到线段 OQ,则经过点 Q 的双曲线的表达式为( )Ay By Cy Dy5已知二次函数的图象如图所示,则下列结论:ac>0;a-b+c<0; 当时,;,其中错误的结论有ABCD6如果边长相等的正五边形和正方形的一边重合,那么1的度数是( )A30°B15°C18°D20°7不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A摸出的是3个白球B摸出的是3个黑球C摸出的是2个白球、1个黑球D摸出的是2个黑球、1个白球8下列图形中,是轴对称图形的是( )ABCD9如图,在RtABC中,BAC90°,ABAC,ADBC,垂足为D、E,F分别是CD,AD上的点,且CEAF.如果AED62°,那么DBF的度数为()A62°B38°C28°D26°10如图,在ABCD中,用直尺和圆规作BAD的平分线AG交BC于点E若BF=8,AB=5,则AE的长为( )A5B6C8D1211如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分BAD,分别交BC、BD于点E、P,连接OE,ADC=60°,AB=BC=1,则下列结论:CAD=30°BD=S平行四边形ABCD=ABACOE=ADSAPO=,正确的个数是()A2B3C4D512随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13圆锥底面圆的半径为3,高为4,它的侧面积等于_(结果保留)14规定:x表示不大于x的最大整数,(x)表示不小于x的最小整数,x)表示最接近x的整数(xn+0.5,n为整数),例如:1.3=1,(1.3)=3,1.3)=1则下列说法正确的是_(写出所有正确说法的序号)当x=1.7时,x+(x)+x)=6;当x=1.1时,x+(x)+x)=7;方程4x+3(x)+x)=11的解为1x1.5;当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有两个交点15如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上()AC的长等于_;()在线段AC上有一点D,满足AB2=ADAC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_16有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 17如图,点D在的边上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离的长等于_18如图,点G是ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将ADG绕点D旋转180°得到BDE,ABC的面积=_cm1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?20(6分)4件同型号的产品中,有1件不合格品和3件合格品从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?21(6分)先化简,再求值:,再从的范围内选取一个你最喜欢的值代入,求值22(8分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元)。销售部规定:当x<16时,为“不称职”,当 时为“基本称职”,当 时为“称职”,当 时为“优秀”.根据以上信息,解答下列问题: 补全折线统计图和扇形统计图; 求所有“称职”和“优秀”的销售员销售额的中位数和众数; 为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励。如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.23(8分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?24(10分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整)请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?25(10分)观察下列各式:由此归纳出一般规律_.26(12分)先化简,再求值:,其中a是方程a2+a6=0的解27(12分)如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F(1)求证:ABFEDF;(2)若AB=6,BC=8,求AF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】解:将60000000000用科学记数法表示为:6×1故选C【点睛】本题考查科学记数法表示较大的数,掌握科学计数法的一般形式是解题关键2、B【解析】根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B.考点:中心对称图形.【详解】请在此输入详解!3、D【解析】延长BO交圆于D,连接CD,则BCD=90°,D=A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.【详解】解:延长BO交O于D,连接CD,则BCD=90°,D=A=60°,CBD=30°,BD=2R,DC=R,BC=R,故选D.【点睛】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.4、D【解析】过P,Q分别作PMx轴,QNx轴,利用AAS得到两三角形全等,由全等三角形对应边相等及反比例函数k的几何意义确定出所求即可【详解】过P,Q分别作PMx轴,QNx轴,POQ=90°,QON+POM=90°,QON+OQN=90°,POM=OQN,由旋转可得OP=OQ,在QON和OPM中,QONOPM(AAS),ON=PM,QN=OM,设P(a,b),则有Q(-b,a),由点P在y=上,得到ab=3,可得-ab=-3,则点Q在y=-上故选D【点睛】此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键5、C【解析】根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;根据自变量为-1时函数值,可得答案;根据观察函数图象的纵坐标,可得答案;根据对称轴,整理可得答案【详解】图象开口向下,得a0,图象与y轴的交点在x轴的上方,得c0,ac,故错误;由图象,得x=-1时,y0,即a-b+c0,故正确;由图象,得图象与y轴的交点在x轴的上方,即当x0时,y有大于零的部分,故错误;由对称轴,得x=-=1,解得b=-2a,2a+b=0故正确;故选D【点睛】考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)抛物线与x轴交点个数由判别式确定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点6、C【解析】1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解【详解】正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,1=108°-90°=18°故选C【点睛】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键7、A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.8、B【解析】分析:根据轴对称图形的概念求解详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形9、C【解析】分析:主要考查:等腰三角形的三线合一,直角三角形的性质注意:根据斜边和直角边对应相等可以证明BDFADE详解:AB=AC,ADBC,BD=CD 又BAC=90°,BD=AD=CD 又CE=AF,DF=DE,RtBDFRtADE(SAS), DBF=DAE=90°62°=28° 故选C点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键10、B【解析】试题分析:由基本作图得到AB=AF,AG平分BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AEBF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1故选B考点:1、作图基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质11、D【解析】先根据角平分线和平行得:BAE=BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:ABE是等边三角形,由外角的性质和等腰三角形的性质得:ACE=30°,最后由平行线的性质可作判断;先根据三角形中位线定理得:OE=AB=,OEAB,根据勾股定理计算OC=和OD的长,可得BD的长;因为BAC=90°,根据平行四边形的面积公式可作判断;根据三角形中位线定理可作判断;根据同高三角形面积的比等于对应底边的比可得:SAOE=SEOC=OEOC=,代入可得结论【详解】AE平分BAD,BAE=DAE,四边形ABCD是平行四边形,ADBC,ABC=ADC=60°,DAE=BEA,BAE=BEA,AB=BE=1,ABE是等边三角形,AE=BE=1,BC=2,EC=1,AE=EC,EAC=ACE,AEB=EAC+ACE=60°,ACE=30°,ADBC,CAD=ACE=30°,故正确;BE=EC,OA=OC,OE=AB=,OEAB,EOC=BAC=60°+30°=90°,RtEOC中,OC=,四边形ABCD是平行四边形,BCD=BAD=120°,ACB=30°,ACD=90°,RtOCD中,OD=,BD=2OD=,故正确;由知:BAC=90°,SABCD=ABAC,故正确;由知:OE是ABC的中位线,又AB=BC,BC=AD,OE=AB=AD,故正确;四边形ABCD是平行四边形,OA=OC=,SAOE=SEOC=OEOC=××,OEAB,SAOP= SAOE=,故正确;本题正确的有:,5个,故选D【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系12、D【解析】分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可详解:设乘公交车平均每小时走x千米,根据题意可列方程为:故选D点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可二、填空题:(本大题共6个小题,每小题4分,共24分)13、15【解析】根据圆的面积公式、扇形的面积公式计算即可【详解】圆锥的母线长=5,,圆锥底面圆的面积=9圆锥底面圆的周长=2××3=6,即扇形的弧长为6,圆锥的侧面展开图的面积=×6×5=15,【点睛】本题考查的是扇形的面积,熟练掌握扇形和圆的面积公式是解题的关键.14、【解析】试题解析:当x=1.7时,x+(x)+x)=1.7+(1.7)+1.7)=1+1+1=5,故错误;当x=1.1时,x+(x)+x)=1.1+(1.1)+1.1)=(3)+(1)+(1)=7,故正确;当1x1.5时,4x+3(x)+x)=4×1+3×1+1=4+6+1=11,故正确;1x1时,当1x0.5时,y=x+(x)+x=1+0+x=x1,当0.5x0时,y=x+(x)+x=1+0+x=x1,当x=0时,y=x+(x)+x=0+0+0=0,当0x0.5时,y=x+(x)+x=0+1+x=x+1,当0.5x1时,y=x+(x)+x=0+1+x=x+1,y=4x,则x1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有三个交点,故错误,故答案为考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组15、5 见解析 【解析】(1)由勾股定理即可求解;(2)寻找格点M和N,构建与ABC全等的AMN,易证MNAC,从而得到MN与AC的交点即为所求D点.【详解】(1)AC=;(2)如图,连接格点M和N,由图可知:AB=AM=4,BC=AN=,AC=MN=,ABCMAN,AMN=BAC,MAD+CAB=MAD+AMN=90°,MNAC,易解得MAN以MN为底时的高为,AB2=ADAC,AD=AB2÷AC=,综上可知,MN与AC的交点即为所求D点.【点睛】本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D点的思路.16、【解析】试题分析:这四个数中,奇数为1和3,则P(抽出的数字是奇数)=2÷4=考点:概率的计算17、4【解析】连接并延长交于G,连接并延长交于H,根据三角形的重心的概念可得,即可求出GH的长,根据对应边成比例,夹角相等可得,根据相似三角形的性质即可得答案【详解】如图,连接并延长交于G,连接并延长交于H,点E、F分别是和的重心,故答案为:4【点睛】本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍18、18【解析】三角形的重心是三条中线的交点,根据中线的性质,SACD=SBCD;再利用勾股定理逆定理证明BGCE,从而得出BCD的高,可求BCD的面积【详解】点G是ABC的重心, GB=3,EG=GC=4,BE=GA=5,即BGCE,CD为ABC的中线, 故答案为:18.【点睛】考查三角形重心的性质,中线的性质,旋转的性质,勾股定理逆定理等,综合性比较强,对学生要求较高.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、1人【解析】解:设九年级学生有x人,根据题意,列方程得:,整理得0.8(x+88)=x,解之得x=1经检验x=1是原方程的解答:这个学校九年级学生有1人 设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:,根据题意可得方程,解方程即可20、(1);(2);(3)x=1【解析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.【详解】解:(1)4件同型号的产品中,有1件不合格品,P(不合格品)=;(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)=;(3)大量重复试验后发现,抽到合格品的频率稳定在0.95,抽到合格品的概率等于0.95, =0.95,解得:x=1【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法21、原式=,把x=2代入的原式=1. 【解析】试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.试题解析:原式= = 当x=2时,原式=122、(1)补全统计图如图见解析;(2) “称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.【解析】(1) 根据称职的人数及其所占百分比求得总人数, 据此求得不称职、 基本称职和优秀的百分比, 再求出优秀的总人数, 从而得出销售 26 万元的人数, 据此即可补全图形 (2) 根据中位数和众数的定义求解可得;(3) 根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据 【详解】(1)依题可得:“不称职”人数为:2+2=4(人),“基本称职”人数为:2+3+3+2=10(人),“称职”人数为:4+5+4+3+4=20(人),总人数为:20÷50%=40(人),不称职”百分比:a=4÷40=10%,“基本称职”百分比:b=10÷40=25%,“优秀”百分比:d=1-10%-25%-50%=15%,“优秀”人数为:40×15%=6(人),得26分的人数为:6-2-1-1=2(人),补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,“优秀”25万2人,26万2人,27万1人,28万1人;“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)由(2)知月销售额奖励标准应定为22万.“称职”和“优秀”的销售员月销售额的中位数为:22万,要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【点睛】考查频数分布直方图、 扇形统计图、 中位数、 众数等知识, 解题的关键是灵活运用所学知识解决问题.23、 甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件【解析】【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,根据题意得,解得,经检验,是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲乙两种商品的销售量为,设甲种商品按原销售单价销售a件,则,解得,答:甲种商品按原销售单价至少销售20件【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.24、(1)详见解析;(2)40%;(3)105;(4)【解析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论【详解】(1)由条形图知,男生共有:10+20+13+9=52人,女生人数为100-52=48人,参加武术的女生为48-15-8-15=10人,参加武术的人数为20+10=30人,30÷100=30%,参加器乐的人数为9+15=24人,24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%40%答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%(3)500×21%=105(人)答:估计其中参加“书法”项目活动的有105人(4)答:正好抽到参加“器乐”活动项目的女生的概率为【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小25、xn+1-1【解析】试题分析:观察其右边的结果:第一个是1;第二个是1;依此类推,则第n个的结果即可求得试题解析:(x1)(+x+1)=故答案为.考点:平方差公式26、.【解析】先计算括号里面的,再利用除法化简原式,【详解】 ,= ,= ,=,=,由a2+a6=0,得a=3或a=2,a20,a2,a=3,当a=3时,原式=【点睛】本题考查了分式的化简求值及一元二次方程的解,解题的关键是熟练掌握分式的混合运算.27、(1)见解析;(2) 【解析】(1)根据矩形的性质可得AB=CD,C=A=90°,再根据折叠的性质可得DE=CD,C=E=90°,然后利用“角角边”证明即可;(2)设AF=x,则BF=DF=8-x,根据勾股定理列方程求解即可【详解】(1)证明:在矩形ABCD中,AB=CD,A=C=90°,由折叠得:DE=CD,C=E=90°,AB=DE,A=E=90°,AFB=EFD,ABFEDF(AAS);(2)解:ABFEDF,BF=DF,设AF=x,则BF=DF=8x,在RtABF中,由勾股定理得:BF2=AB2+AF2,即(8x)2=x2+62, x=,即AF=【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,矩形的性质,勾股定理,翻折前后对应边相等,对应角相等,利用勾股定理列出方程是解题的关键

    注意事项

    本文(2023届福建省晋江市养正中学中考数学模拟试题含解析.doc)为本站会员(lil****205)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开