2023届江苏省滨海县联考中考考前最后一卷数学试卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1在实数,中,其中最小的实数是()ABCD2实数的倒数是( )ABCD3如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形,转动这个四边形,使它形状改变,当,时,等于( )ABCD4正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为( )A8BCD5如图,A,B是半径为1的O上两点,且OAOB,点P从点A出发,在O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()ABC或D或6如图,直线、及木条在同一平面上,将木条绕点旋转到与直线平行时,其最小旋转角为( )ABCD7如果零上2记作2,那么零下3记作( )A3B2C3D28如图,在ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A5048B2548C5024D9如图1,在矩形ABCD中,动点E从A出发,沿ABC方向运动,当点E到达点C时停止运动,过点E作EFAE交CD于点F,设点E运动路程为x,CFy,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:a3;当CF时,点E的运动路程为或或,则下列判断正确的是( )A都对B都错C对错D错对10若实数 a,b 满足|a|b|,则与实数 a,b 对应的点在数轴上的位置可以是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第根图形需要_根火柴.12如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_.13将绕点逆时针旋转到使、在同一直线上,若,则图中阴影部分面积为_.14如图,AB是O的直径,点E是的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若C30°,O的半径是2,则图形中阴影部分的面积是_15计算:(2018)0=_16如图,在ABC中,C90°,AC8,BC6,点D是AB的中点,点E在边AC上,将ADE沿DE翻折,使点A落在点A处,当AEAC时,AB_三、解答题(共8题,共72分)17(8分)如图,在RtABC中,C=90°,A=30°,AB=8,点P从点A出发,沿折线ABBC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止设点P运动的时间为t秒(1)求线段AQ的长;(用含t的代数式表示)(2)当点P在AB边上运动时,求PQ与ABC的一边垂直时t的值;(3)设APQ的面积为S,求S与t的函数关系式;(4)当APQ是以PQ为腰的等腰三角形时,直接写出t的值18(8分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,AEB、AFD的平分线交于P点求证:PEPF19(8分)已知化简;如果、是方程的两个根,求的值20(8分)综合与实践折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究问题背景:在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C处,点D落在点D处,射线EC与射线DA相交于点M猜想与证明:(1)如图1,当EC与线段AD交于点M时,判断MEF的形状并证明你的结论;操作与画图:(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段CD'分别与AD,AB交于P,N两点时,CE与AB交于点Q,连接MN 并延长MN交EF于点O 求证:MOEF 且MO平分EF;(4)若AB=4,AD=4,在点E由点B运动到点C的过程中,点D'所经过的路径的长为 21(8分)计算:+-2+6tan30°22(10分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包若供货厂家规定市场价不得低于30元/包试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?23(12分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行某自行车店在销售某型号自行车时,以高出进价的50%标价已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?24如图,已知点D、E为ABC的边BC上两点AD=AE,BD=CE,为了判断B与C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据解:过点A作AHBC,垂足为H在ADE中,AD=AE(已知)AHBC(所作)DH=EH(等腰三角形底边上的高也是底边上的中线)又BD=CE(已知)BD+DH=CE+EH(等式的性质)即:BH= 又 (所作)AH为线段 的垂直平分线AB=AC(线段垂直平分线上的点到线段两个端点的距离相等) (等边对等角)参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解【详解】解:0,-2,1,中,-201,其中最小的实数为-2;故选:B【点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小2、D【解析】因为,所以的倒数是.故选D.3、B【解析】首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,易得ABC是等边三角形,即可得到答案【详解】连接AC,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=BC,ABC是等边三角形,AC=AB=1故选:B【点睛】本题考点:菱形的性质.4、D【解析】根据正方形的边长,根据勾股定理求出AR,求出ABRDRS,求出DS,根据面积公式求出即可【详解】正方形ABCD的面积为16,正方形BPQR面积为25,正方形ABCD的边长为4,正方形BPQR的边长为5,在RtABR中,AB=4,BR=5,由勾股定理得:AR=3,四边形ABCD是正方形,A=D=BRQ=90°,ABR+ARB=90°,ARB+DRS=90°,ABR=DRS,A=D,ABRDRS,DS=,阴影部分的面积S=S正方形ABCD-SABR-SRDS=4×4-×4×3-××1=,故选:D【点睛】本题考查了正方形的性质,相似三角形的性质和判定,能求出ABR和RDS的面积是解此题的关键5、D【解析】分两种情形讨论当点P顺时针旋转时,图象是,当点P逆时针旋转时,图象是,由此即可解决问题【详解】分两种情况讨论:当点P顺时针旋转时,BP的长从增加到2,再降到0,再增加到,图象符合;当点P逆时针旋转时,BP的长从降到0,再增加到2,再降到,图象符合故答案为或故选D【点睛】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型6、B【解析】如图所示,过O点作a的平行线d,根据平行线的性质得到23,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.【详解】如图所示,过O点作a的平行线d,ad,由两直线平行同位角相等得到2350°,木条c绕O点与直线d重合时,与直线a平行,旋转角1290°.故选B【点睛】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.7、A【解析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】“正”和“负”相对,如果零上2记作2,那么零下3记作3.故选A.8、B【解析】设以AB、AC为直径作半圆交BC于D点,连AD,如图,ADBC,BD=DC=BC=8,而AB=AC=10,CB=16,AD=6,阴影部分面积=半圆AC的面积+半圆AB的面积ABC的面积,=52166,=251故选B9、A【解析】由已知,AB=a,AB+BC=5,当E在BC上时,如图,可得ABEECF,继而根据相似三角形的性质可得y=,根据二次函数的性质可得,由此可得a=3,继而可得y=,把y=代入解方程可求得x1=,x2=,由此可求得当E在AB上时,y=时,x=,据此即可作出判断【详解】解:由已知,AB=a,AB+BC=5,当E在BC上时,如图,E作EFAE,ABEECF,y=,当x=时,解得a1=3,a2=(舍去),y=,当y=时,=,解得x1=,x2=,当E在AB上时,y=时,x=3=,故正确,故选A【点睛】本题考查了二次函数的应用,相似三角形的判定与性质,综合性较强,弄清题意,正确画出符合条件的图形,熟练运用二次函数的性质以及相似三角形的判定与性质是解题的关键10、D【解析】根据绝对值的意义即可解答【详解】由|a|b|,得a与原点的距离比b与原点的距离远, 只有选项D符合,故选D【点睛】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.【详解】第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+2×6个火柴组成,组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.故答案为6n+2【点睛】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.12、2【解析】分析:由主视图得出长方体的长是6,宽是2,这个几何体的体积是16,设高为h,则6×2×h=16,解得:h=1它的表面积是:2×1×2+2×6×2+1×6×2=213、【解析】分析:易得整理后阴影部分面积为圆心角为110°,两个半径分别为4和1的圆环的面积详解:由旋转可得ABCABCBCA=90°,BAC=30°,AB=4cm,BC=1cm,AC=1cm,ABA=110°,CBC=110°,阴影部分面积=(SABC+S扇形BAA)-S扇形BCC-SABC=×(41-11)=4cm1故答案为4点睛:本题利用旋转前后的图形全等,直角三角形的性质,扇形的面积公式求解14、【解析】首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DE,AD的长,利用SADES扇形FOE图中阴影部分的面积求出即可【详解】解:连接OE,OF、EF,DE是切线,OEDE,C30°,OBOE2,EOC60°,OC2OE4,CEOC×sin60°= 点E是弧BF的中点,EABDAE30°,F,E是半圆弧的三等分点,EOFEOBAOF60°,OEAD,DAC60°,ADC90°,CEAE DE,ADDE×tan60°= SADE FOE和AEF同底等高,FOE和AEF面积相等,图中阴影部分的面积为:SADES扇形FOE故答案为【点睛】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出FOE和AEF面积相等是解题关键15、1【解析】根据零指数幂:a0=1(a0)可得答案【详解】原式=1,故答案为:1【点睛】此题主要考查了零次幂,关键是掌握计算公式16、或7 【解析】分两种情况:如图1, 作辅助线, 构建矩形, 先由勾股定理求斜边AB=10, 由中点的定义求出AD和BD的长, 证明四边形HFGB是矩形, 根据同角的三角函数列式可以求DG和DF的长,并由翻折的性质得: DA' E=A,A' D=AD=5, 由矩形性质和勾股定理可以得出结论: A' B=;如图2, 作辅助线, 构建矩形A' MNF,同理可以求出A' B的长.【详解】解:分两种情况:如图1, 过D作DGBC与G, 交A' E与F, 过B作BHA' E与H,D为AB的中点,BD=AB=AD,C=,AC=8,BC=6,AB=10,BD=AD=5,sin ABC=,DG=4,由翻折得: DA' E=A, A' D=AD=5,sinDA' E=sin A=.DF=3,FG=4-3=1,A'EAC,BCAC,A'E/BC,HFG+DGB=,DGB=,HFG=,EHB=,四边形HFGB是矩形,BH=FG=1,同理得: A' E=AE=8 -1=7,A'H=A'E-EH=7-6=1,在RtAHB中 , 由勾股定理得: A' B=. 如图2, 过D作MN/AC, 交BC与于N,过A' 作A' F/AC, 交BC的延长线于F,延长A' E交直线DN于M, A'EAC,A' MMN, A' EA'F,M=MA'F=,ACB=,F=ACB=,四边形MA' FN県矩形,MN=A'F,FN=A'M,由翻折得: A' D=AD=5,RtA'MD中,DM=3,A'M=4,FN=A'M=4,RtBDN中,BD=5,DN=4, BN=3,A' F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,RtABF中, 由勾股定理得: A' B=;综上所述,A'B的长为或.故答案为:或.【点睛】本题主要考查三角形翻转后的性质,注意不同的情况需分情况讨论.三、解答题(共8题,共72分)17、(1)4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或【解析】分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC;当PQAB时;当PQAC时;分别求解即可;(3)当P在AB边上时,即0t1,作PGAC于G,或当P在边BC上时,即1t3,分别根据三角形的面积求函数的解析式即可;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,作PGAC于G,则AG=GQ,列方程求解;当P在边AC上时, AQ=PQ,根据勾股定理求解.详解:(1)如图1,RtABC中,A=30°,AB=8,BC=AB=4,AC=,由题意得:CQ=t,AQ=4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC,此时t=0;当PQAB时,如图2,AQ=4t,AP=8t,A=30°,cos30°=,t=;当PQAC时,如图3,AQ=4t,AP=8t,A=30°,cos30°=,t=;综上所述,当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)分两种情况:当P在AB边上时,即0t1,如图4,作PGAC于G,A=30°,AP=8t,AGP=90°,PG=4t,SAPQ=AQPG=(4t)4t=2t2+8t;当P在边BC上时,即1t3,如图5,由题意得:PB=2(t1),PC=42(t1)=2t+6,SAPQ=AQPC=(4t)(2t+6)=t2;综上所述,S与t的函数关系式为:S=;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,如图6,AP=PQ,作PGAC于G,则AG=GQ,A=30°,AP=8t,AGP=90°,PG=4t,AG=4t,由AQ=2AG得:4t=8t,t=,当P在边AC上时,如图7,AQ=PQ,RtPCQ中,由勾股定理得:CQ2+CP2=PQ2,t=或(舍),综上所述,t的值为或点睛:此题主要考查了三角形中的动点问题,用到勾股定理,等腰三角形的性质,直角三角形的性质,二次函数等知识,是一道比较困难的综合题,关键是合理添加辅助线,构造合适的方程求解.18、证明见解析.【解析】由圆内接四边形ABCD的两组对边延长线分别交于E、F,AEB、AFD的平分线交于P点,继而可得EM=EN,即可证得:PEPF【详解】四边形内接于圆,平分,平分,【点睛】此题考查了圆的内接多边形的性质以及圆周角定理此题难度不大,注意掌握数形结合思想的应用19、 (1) ;(2)-4.【解析】(1)先通分,再进行同分母的减法运算,然后约分得到原式 (2)利用根与系数的关系得到 然后利用整体代入的方法计算【详解】解:(1)(2)、是方程,【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程 的两根时, 也考查了分式的加减法20、(1)MEF是等腰三角形(2)见解析(3)证明见解析(4) 【解析】(1)由ADBC,可得MFECEF,由折叠可得,MEFCEF,依据MFEMEF,即可得到MEMF,进而得出MEF是等腰三角形;(2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D'的位置;(3)依据BEQD'FP,可得PFQE,依据NC'PNAP,可得ANC'N,依据RtMC'NRtMAN,可得AMNC'MN,进而得到MEF是等腰三角形,依据三线合一,即可得到MOEF 且MO平分EF;(4)依据点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,即可得到点D'所经过的路径的长【详解】(1)MEF是等腰三角形理由:四边形ABCD是矩形,ADBC,MFE=CEF,由折叠可得,MEF=CEF,MFE=MEF,ME=MF,MEF是等腰三角形(2)折痕EF和折叠后的图形如图所示:(3)如图,FD=BE,由折叠可得,D'F=DF,BE=D'F,在NC'Q和NAP中,C'NQ=ANP,NC'Q=NAP=90°,C'QN=APN,C'QN=BQE,APN=D'PF,BQE=D'PF,在BEQ和D'FP中,BEQD'FP(AAS),PF=QE,四边形ABCD是矩形,AD=BC,ADFD=BCBE,AF=CE,由折叠可得,C'E=EC,AF=C'E,AP=C'Q,在NC'Q和NAP中,NC'PNAP(AAS),AN=C'N,在RtMC'N和RtMAN中,RtMC'NRtMAN(HL),AMN=C'MN,由折叠可得,C'EF=CEF,四边形ABCD是矩形,ADBC,AFE=FEC,C'EF=AFE,ME=MF,MEF是等腰三角形,MOEF 且MO平分EF;(4)在点E由点B运动到点C的过程中,点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,如图:故其长为L=故答案为【点睛】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键21、10 +【解析】根据实数的性质进行化简即可计算.【详解】原式=9-1+2-+6×=10-=10 +【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.22、(1)y=5x+350;(2)w=5x2+450x7000(30x40);(3)当售价定为45元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是1元【解析】试题分析:(1)根据题意可以直接写出y与x之间的函数关系式;(2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;(3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题试题解析:解:(1)由题意可得:y=200(x30)×5=5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=5x+350;(2)由题意可得,w=(x20)×(5x+ 350)=5x2+450x7000(30x70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=5x2+450x7000(30x40);(3)w=5x2+450x7000=5(x45)2+1二次项系数50,x=45时,w取得最大值,最大值为1答:当售价定为45元时,商场每周销售这种防尘口罩所获得的利润最大,最大利润是1元点睛:本题考查了二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值23、(1)进价为1000元,标价为1500元;(2)该型号自行车降价80元出售每月获利最大,最大利润是26460元【解析】分析:(1)设进价为x元,则标价是1.5x元,根据关键语句:按标价九折销售该型号自行车8辆的利润是1.5x×0.9×8-8x,将标价直降100元销售7辆获利是(1.5x-100)×7-7x,根据利润相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x,再解方程即可得到进价,进而得到标价;(2)设该型号自行车降价a元,利润为w元,利用销售量×每辆自行车的利润=总利润列出函数关系式,再利用配方法求最值即可详解:(1)设进价为x元,则标价是1.5x元,由题意得:1.5x×0.9×8-8x=(1.5x-100)×7-7x,解得:x=1000,1.5×1000=1500(元),答:进价为1000元,标价为1500元;(2)设该型号自行车降价a元,利润为w元,由题意得:w=(51+×3)(1500-1000-a),=-(a-80)2+26460,-0,当a=80时,w最大=26460,答:该型号自行车降价80元出售每月获利最大,最大利润是26460元点睛:此题主要考查了二次函数的应用,以及元一次方程的应用,关键是正确理解题意,根据已知得出w与a的关系式,进而求出最值24、见解析【解析】根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可.【详解】过点A作AHBC,垂足为H在ADE中,AD=AE(已知),AHBC(所作),DH=EH(等腰三角形底边上的高也是底边上的中线)又BD=CE(已知),BD+DH=CE+EH(等式的性质),即:BH=CHAHBC(所作),AH为线段BC的垂直平分线AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)B=C(等边对等角)【点睛】本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;