2023届江苏省盐城市大丰区城东实验中考数学全真模拟试题含解析.doc
-
资源ID:87839096
资源大小:818KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届江苏省盐城市大丰区城东实验中考数学全真模拟试题含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图是某个几何体的三视图,该几何体是()A三棱柱B三棱锥C圆柱D圆锥2小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )ABCD3在,,则的值为( )ABCD4运用乘法公式计算(3a)(a+3)的结果是()Aa26a+9Ba29C9a2Da23a+95下列计算正确的是( )A3a26a2=3B(2a)(a)=2a2C10a10÷2a2=5a5D(a3)2=a66在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是( )A3 B3.2 C4 D4.57将抛物线向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )ABCD8下列手机手势解锁图案中,是轴对称图形的是( )ABCD9在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah例如:三点坐标分别为A(1,2),B(3,1),C(2,2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1若D(1,2)、E(2,1)、F(0,t)三点的“矩面积”为18,则t的值为()A3或7 B4或6 C4或7 D3或610如图,矩形ABCD的顶点A、C分别在直线a、b上,且ab,1=60°,则2的度数为( )A30°B45°C60°D75°二、填空题(本大题共6个小题,每小题3分,共18分)11如图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:;不等式的解集是或.其中正确结论的序号是_12关于x的一元二次方程有两个不相等的实数根,则k的取值范围是 13如图,AB为圆O的直径,弦CDAB,垂足为点E,连接OC,若OC5,CD8,则AE_14如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA3,OB4,D为边OB的中点若E为边OA上的一个动点,当CDE的周长最小时,则点E的坐标_ 15如图,点A、B、C是O上的三点,且AOB是正三角形,则ACB的度数是 。16菱形ABCD中,A=60°,AB=9,点P是菱形ABCD内一点,PB=PD=3,则AP的长为_三、解答题(共8题,共72分)17(8分)如图,点A(m,m1),B(m1,2m3)都在反比例函数的图象上(1)求m,k的值; (2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式18(8分)如图,四边形ABCD的外接圆为O,AD是O的直径,过点B作O的切线,交DA的延长线于点E,连接BD,且EDBC(1)求证:DB平分ADC;(2)若EB10,CD9,tanABE,求O的半径19(8分)如图,在中,是边上的高线,平分交于点,经过,两点的交于点,交于点,为的直径(1)求证:是的切线;(2)当,时,求的半径20(8分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1点P是AC上的一个动点,过点P作MNAC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上)设AP的长为x(0x4),AMN的面积为y建立模型:(1)y与x的函数关系式为:,解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象请你补充列表,并在如图的坐标系中画出此函数的图象:x01134y0 0(3)观察所画的图象,写出该函数的两条性质: 21(8分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?22(10分)计算:23(12分)如图,在ABC中,ACB90°,ABC10°,CDE是等边三角形,点D在边AB上(1)如图1,当点E在边BC上时,求证DEEB;(2)如图2,当点E在ABC内部时,猜想ED和EB数量关系,并加以证明;(1)如图1,当点E在ABC外部时,EHAB于点H,过点E作GEAB,交线段AC的延长线于点G,AG5CG,BH1求CG的长24校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使CAD30°,CBD60°求AB的长(结果保留根号);已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由(参考数据:1.7,1.4)参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A考点:由三视图判定几何体.2、C【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:A、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;B、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误故选C【点睛】考核知识点:正方体的表面展开图.3、A【解析】本题可以利用锐角三角函数的定义求解即可【详解】解:tanA=,AC=2BC,tanA=故选:A【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 4、C【解析】根据平方差公式计算可得【详解】解:(3a)(a+3)32a29a2,故选C【点睛】本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;右边是相同项的平方减去相反项的平方5、B【解析】根据整式的运算法则分别计算可得出结论.【详解】选项A,由合并同类项法则可得3a26a2=3a2,不正确;选项B,单项式乘单项式的运算可得(2a)(a)=2a2,正确;选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;选项D,根据幂的乘方可得(a3)2=a6,不正确故答案选B考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式6、B【解析】七年级(1)班捐献图书的同学人数为9÷18%=50人,捐献4册的人数为50×30%=15人,捐献3册的人数为50-6-9-15-8=12人,所以该班平均每人捐书的册数为(6+9×2+12×3+15×4+8×5)÷50=3.2册,故选B.7、A【解析】根据二次函数的平移规律即可得出【详解】解:向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为故答案为:A【点睛】本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律8、D【解析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.9、C【解析】由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分 2或t1两种情况进行求解即可.【详解】解:由题可知a=3,则h=18÷3=6,则可知t2或t1.当t2时,t-1=6,解得t=7;当t1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解题意是解题关键.10、C【解析】试题分析:过点D作DEa,四边形ABCD是矩形,BAD=ADC=90°,3=90°1=90°60°=30°,ab,DEab,4=3=30°,2=5,2=90°30°=60°故选C考点:1矩形;2平行线的性质.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】分析:根据一次函数和反比例函数的性质得到k1k20,故错误;把A(-2,m)、B(1,n)代入y=中得到-2m=n故正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到SAOP=SBOQ;故正确;根据图象得到不等式k1x+b的解集是x-2或0x1,故正确详解:由图象知,k10,k20,k1k20,故错误;把A(-2,m)、B(1,n)代入y=中得-2m=n,m+n=0,故正确;把A(-2,m)、B(1,n)代入y=k1x+b得,,-2m=n,y=-mx-m,已知直线y=k1x+b与x轴、y轴相交于P、Q两点,P(-1,0),Q(0,-m),OP=1,OQ=m,SAOP=m,SBOQ=m,SAOP=SBOQ;故正确;由图象知不等式k1x+b的解集是x-2或0x1,故正确;故答案为:点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键12、k且k1【解析】根据一元二次方程kx2-x+1=1有两个不相等的实数根,知=b24ac1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:有两个不相等的实数根,=14k1,且k1,解得,k且k113、2【解析】试题解析:AB为圆O的直径,弦CDAB,垂足为点E.在直角OCE中, 则AE=OAOE=53=2.故答案为2.14、 (1,0) 【解析】分析:由于C、D是定点,则CD是定值,如果的周长最小,即有最小值为此,作点D关于x轴的对称点D,当点E在线段CD上时的周长最小详解:如图,作点D关于x轴的对称点D,连接CD与x轴交于点E,连接DE.若在边OA上任取点E与点E不重合,连接CE、DE、DE由DE+CE=DE+CE>CD=DE+CE=DE+CE,可知CDE的周长最小,在矩形OACB中,OA=3,OB=4,D为OB的中点,BC=3,DO=DO=2,DB=6,OEBC, RtDOERtDBC,有 OE=1,点E的坐标为(1,0).故答案为:(1,0).点睛:考查轴对称-最短路线问题, 坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.15、30°【解析】试题分析:圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.AOB是正三角形AOB=60°ACB=30°.考点:圆周角定理点评:本题属于基础应用题,只需学生熟练掌握圆周角定理,即可完成.16、3或6【解析】分成P在OA上和P在OC上两种情况进行讨论,根据ABD是等边三角形,即可求得OA的长度,在直角OBP中利用勾股定理求得OP的长,则AP即可求得【详解】设AC和BE相交于点O当P在OA上时,AB=AD,A=60°,ABD是等边三角形,BD=AB=9,OB=OD=BD=则AO=在直角OBP中,OP=则AP=OA-OP-;当P在OC上时,AP=OA+OP=故答案是:3或6【点睛】本题考查了菱形的性质,注意到P在AC上,应分两种情况进行讨论是解题的关键三、解答题(共8题,共72分)17、(1)m3,k12;(2)或【解析】【分析】(1)把A(m,m1),B(m3,m1)代入反比例函数y,得km(m1)(m3)(m1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AMx轴于点M,过点B作BNy轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.【详解】解:(1)点A(m,m1),B(m3,m1)都在反比例函数y的图像上,kxy,km(m1)(m3)(m1),m2mm22m3,解得m3,k3×(31)12.(2)m3,A(3,4),B(6,2)设直线AB的函数表达式为ykxb(k0),则 解得 直线AB的函数表达式为yx6.(3)M(3,0),N(0,2)或M(3,0),N(0,2)解答过程如下:过点A作AMx轴于点M,过点B作BNy轴于点N,两线交于点P.由(1)知:A(3,4),B(6,2),APPM2,BPPN3,四边形ANMB是平行四边形,此时M(3,0),N(0,2)当M(3,0),N(0,2)时,根据勾股定理能求出AMBN,ABMN,即四边形AMNB是平行四边形故M(3,0),N(0,2)或M(3,0),N(0,2)【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.18、(1)详见解析;(2)OA【解析】(1)连接OB,证明ABE=ADB,可得ABE=BDC,则ADB=BDC;(2)证明AEBCBD,AB=x,则BD=2x,可求出AB,则答案可求出【详解】(1)证明:连接OB,BE为O的切线,OBBE,OBE90°,ABE+OBA90°,OAOB,OBAOAB,ABE+OAB90°,AD是O的直径,OAB+ADB90°,ABEADB,四边形ABCD的外接圆为O,EABC,EDBC,ABEBDC,ADBBDC,即DB平分ADC;(2)解:tanABE,设ABx,则BD2x,BAEC,ABEBDC,AEBCBD,解得x3,ABx15,OA【点睛】本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题19、(1)见解析;(2)的半径是.【解析】(1)连结,易证,由于是边上的高线,从而可知,所以是的切线(2)由于,从而可知,由,可知:,易证,所以,再证明,所以,从而可求出.【详解】解:(1)连结平分,又,是边上的高线,是的切线.(2),是中点,又,在中,而,的半径是.【点睛】本题考查圆的综合问题,涉及锐角三角函数,相似三角形的判定与性质,等腰三角形的性质等知识,综合程度较高,需要学生综合运用知识的能力20、 (1) y=;(1)见解析;(3)见解析【解析】(1)根据线段相似的关系得出函数关系式(1)代入中函数表达式即可填表(3)画图像,分析即可.【详解】(1)设AP=x当0x1时MNBDAPMAODMP=AC垂直平分MNPN=PM=xMN=xy=APMN=当1x4时,P在线段OC上,CP=4xCPMCODPM=MN=1PM=4xy=y=(1)由(1)当x=1时,y=当x=1时,y=1当x=3时,y=(3)根据(1)画出函数图象示意图可知1、当0x1时,y随x的增大而增大1、当1x4时,y随x的增大而减小【点睛】本题考查函数,解题的关键是数形结合思想.21、 (1)2000;(2)2米【解析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米; (2)设人行道的宽度为x米,根据题意得,(203x)(82x)=56 解得:x=2或x=(不合题意,舍去)答:人行道的宽为2米22、.【解析】利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简即可得出答案【详解】解:原式= = 故答案为 【点睛】本题考查实数运算,特殊角的三角函数值,负整数指数幂,正确化简各数是解题关键23、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2【解析】(1)、根据等边三角形的性质得出CED=60°,从而得出EDB=10°,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据ACO和CDE为等边三角形,从而得出ACD和OCE全等,然后得出COE和BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出COE和BOE全等,然后得出CEG和DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案【详解】(1)CDE是等边三角形, CED=60°, EDB=60°B=10°,EDB=B, DE=EB;(2) ED=EB, 理由如下:取AB的中点O,连接CO、EO,ACB=90°,ABC=10°, A=60°,OC=OA, ACO为等边三角形, CA=CO,CDE是等边三角形, ACD=OCE,ACDOCE, COE=A=60°,BOE=60°, COEBOE, EC=EB, ED=EB;(1)、取AB的中点O,连接CO、EO、EB, 由(2)得ACDOCE,COE=A=60°,BOE=60°,COEBOE,EC=EB,ED=EB, EHAB,DH=BH=1,GEAB, G=180°A=120°, CEGDCO, CG=OD,设CG=a,则AG=5a,OD=a,AC=OC=4a,OC=OB, 4a=a+1+1, 解得,a=2,即CG=224、 (1) ;(2)此校车在AB路段超速,理由见解析.【解析】(1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可(2)在第一问的基础上,结合时间关系,计算速度,判断,即可【详解】解:(1)由题意得,在RtADC中,tan30°,解得AD24在 RtBDC 中,tan60°,解得BD8所以ABADBD24816(米)(2)汽车从A到B用时1.5秒,所以速度为16÷1.518.1(米/秒),因为18.1(米/秒)65.2千米/时45千米/时,所以此校车在AB路段超速【点睛】考查三角函数计算公式,考查速度计算方法,关键利用正切值计算方法,计算结果,难度中等