2023届辽宁省大连市甘井子区中考数学押题试卷含解析.doc
-
资源ID:87839383
资源大小:903.50KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届辽宁省大连市甘井子区中考数学押题试卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()A28B29C30D312下列说法正确的是( )A对角线相等且互相垂直的四边形是菱形B对角线互相平分的四边形是正方形C对角线互相垂直的四边形是平行四边形D对角线相等且互相平分的四边形是矩形3我国的钓鱼岛面积约为4400000m2,用科学记数法表示为()A4.4×106 B44×105 C4×106 D0.44×1074下列运算结果正确的是( )A3a2a2 = 2Ba2·a3= a6C(a2)3 = a6Da2÷a2 = a5天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( )A-=20B-=20C-=20D6在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球则两次摸出的小球的标号的和等于6的概率为()ABCD7如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是( )ABCD8实数a、b、c在数轴上的位置如图所示,则代数式|ca|a+b|的值等于()Ac+bBbcCc2a+bDc2ab9如图所示的几何体,上下部分均为圆柱体,其左视图是( )ABCD10如图,平行四边形ABCD的周长为12,A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()ABCD11的倒数是( )AB-3C3D12如图,已知函数y=与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+0的解集是()Ax3B3x0Cx3或x0Dx0二、填空题:(本大题共6个小题,每小题4分,共24分)13已知关于x的一元二次方程kx2+3x4k+6=0有两个相等的实数根,则该实数根是_14比较大小:3_ (填<,>或)15点A到O的最小距离为1,最大距离为3,则O的半径长为_16某航班每次飞行约有111名乘客,若飞机失事的概率为p=1111 15,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿41万元人民币 平均来说,保险公司应向每位乘客至少收取_元保险费才能保证不亏本17一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有_个红球18函数y= 中,自变量x的取值范围为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在正方形中,点是对角线上一个动点(不与点重合),连接过点作,交直线于点作交直线于点,连接(1)由题意易知,观察图,请猜想另外两组全等的三角形 ; ;(2)求证:四边形是平行四边形;(3)已知,的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由20(6分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的O与底边AB交于点D,过点D作DEAC,垂足为E(1)证明:DE为O的切线;(2)连接DC,若BC4,求弧DC与弦DC所围成的图形的面积21(6分)如图,一次函数的图象与反比例函数的图象交于,B 两点(1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围22(8分)在中, , 是的角平分线,交于点 .(1)求的长;(2)求的长.23(8分)如图,在平行四边形ABCD中,ABBC利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);若BC=8,CD=5,则CE= 24(10分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD轴于点D,BE轴且与轴交于点E.求点B的坐标及直线AB的解析式;判断四边形CBED的形状,并说明理由.25(10分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且ECF45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH(1)填空:AHC ACG;(填“”或“”或“”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AEm,AGH的面积S有变化吗?如果变化请求出S与m的函数关系式;如果不变化,请求出定值请直接写出使CGH是等腰三角形的m值26(12分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将ABC绕点D顺时针旋转90°画出旋转后的图形A1B1C1;在网格中将ABC放大2倍得到DEF,使A与D为对应点27(12分)如图,在ABC中,BC40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止求证:ABEACD;若ABBE,求DAE的度数;拓展:若ABD的外心在其内部时,求BDA的取值范围参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据中位数的定义即可解答【详解】解:把这些数从小到大排列为:28,29,29,29,31,31,31,31,最中间的两个数的平均数是:30,则这组数据的中位数是30;故本题答案为:C.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.2、D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A、对角线互相平分且垂直的四边形是菱形,故错误;B、四条边相等的四边形是菱形,故错误;C、对角线相互平分的四边形是平行四边形,故错误;D、对角线相等且相互平分的四边形是矩形,正确;故选D点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理3、A【解析】4400000=4.4×1故选A点睛:科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数4、C【解析】选项A, 3a2a2 = 2 a2;选项B, a2·a3= a5;选项C, (a2)3 = a6;选项D,a2÷a2 = 1.正确的只有选项C,故选C.5、C【解析】关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1【详解】原价买可买瓶,经过还价,可买瓶方程可表示为:=1故选C【点睛】考查了由实际问题抽象出分式方程列方程解应用题的关键步骤在于找相等关系本题要注意讨价前后商品的单价的变化6、C【解析】列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可解:共16种情况,和为6的情况数有3种,所以概率为故选C7、B【解析】根据旋转的性质可得ACAC,然后判断出ACA是等腰直角三角形,根据等腰直角三角形的性质可得CAA45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出ABC,最后根据旋转的性质可得BABC【详解】解:RtABC绕直角顶点C顺时针旋转90°得到ABC,ACAC,ACA是等腰直角三角形,CAA45°,ABC1CAA20°45°65°,BABC65°故选B【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键8、A【解析】根据数轴得到ba0c,根据有理数的加法法则,减法法则得到c-a0,a+b0,根据绝对值的性质化简计算【详解】由数轴可知,ba0c,c-a0,a+b0,则|c-a|-|a+b|=c-a+a+b=c+b,故选A【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键9、C【解析】试题分析:该几何体上下部分均为圆柱体,其左视图为矩形,故选C考点:简单组合体的三视图10、C【解析】过点B作BEAD于E,构建直角ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.【详解】如图,过点B作BEAD于E.A60°,设AB边的长为x,BEABsin60°x.平行四边形ABCD的周长为12,AB(122x)6x,yADBE(6x)×x(0x6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.【点睛】本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.11、A【解析】先求出,再求倒数.【详解】因为所以的倒数是故选A【点睛】考核知识点:绝对值,相反数,倒数.12、C【解析】首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+1的解集【详解】函数y=与函数y=ax2+bx的交点P的纵坐标为1,1=,解得:x=3,P(3,1),故不等式ax2+bx+1的解集是:x3或x1故选C【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据二次项系数非零结合根的判别式=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出k值,将其代入原方程中解之即可得出原方程的解【详解】解:关于x的一元二次方程kx1+3x-4k+6=0有两个相等的实数根,解得:k=,原方程为x1+4x+4=0,即(x+1)1=0,解得:x=-1故答案为:-1【点睛】本题考查根的判别式、一元二次方程的定义以及配方法解一元二次方程,牢记“当=0时,方程有两个相等的实数根”是解题的关键14、<【解析】【分析】根据实数大小比较的方法进行比较即可得答案.【详解】32=9,9<10,3<,故答案为:<.【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.15、1或2【解析】分类讨论:点在圆内,点在圆外,根据线段的和差,可得直径,根据圆的性质,可得答案【详解】点在圆内,圆的直径为1+3=4,圆的半径为2;点在圆外,圆的直径为31=2,圆的半径为1,故答案为1或2.【点睛】本题考查点与圆的位置关系,关键是分类讨论:点在圆内,点在圆外.16、21【解析】每次约有111名乘客,如飞机一旦失事,每位乘客赔偿41万人民币,共计4111万元,由题意可得一次飞行中飞机失事的概率为P=1.11115,所以赔偿的钱数为41111111×1.11115=2111元,即可得至少应该收取保险费每人 =21元17、1【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有x个红球,列出方程=20%, 求得x=1.故答案为1点睛:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率关键是根据红球的频率得到相应的等量关系18、x1【解析】该函数是分式,分式有意义的条件是分母不等于0,故分母x-10,解得x的范围【详解】根据题意得:x10,解得:x1.故答案为x1.【点睛】本题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2)见解析;(3)存在,2【解析】(1)利用正方形的性质及全等三角形的判定方法证明全等即可;(2)由(1)可知,则有,从而得到,最后利用一组对边平行且相等即可证明;(3)由(1)可知,则,从而得到是等腰直角三角形,则当最短时,的面积最小,再根据AB的值求出PB的最小值即可得出答案【详解】解:(1)四边形是正方形,在和中,在和中,故答案为;(2)证明:由(1)可知,四边形是平行四边形.(3)解:存在,理由如下:是等腰直角三角形,最短时,的面积最小,当时,最短,此时,的面积最小为.【点睛】本题主要考查全等三角形的判定及性质,平行四边形的判定,掌握全等三角形的判定方法和平行四边形的判定方法是解题的关键20、(1)详见解析;(2).【解析】(1)连接OD,由平行线的判定定理可得ODAC,利用平行线的性质得ODE=DEA=90°,可得DE为O的切线;(2)连接CD,求弧DC与弦DC所围成的图形的面积利用扇形DOC面积-三角形DOC的面积计算即可【详解】解:(1)证明:连接OD,ODOB,ODBB,ACBC,AB,ODBA,ODAC,ODEDEA90°,DE为O的切线;(2)连接CD,A30°,ACBC,BCA120°,BC为直径,ADC90°,CDAB,BCD60°,ODOC,DOC60°,DOC是等边三角形,BC4,OCDC2,SDOCDC×,弧DC与弦DC所围成的图形的面积【点睛】本题考查的知识点是等腰三角形的性质、切线的判定与性质以及扇形面积的计算,解题的关键是熟练的掌握等腰三角形的性质、切线的判定与性质以及扇形面积的计算.21、(1);(2)或;【解析】(1)利用点A的坐标可求出反比例函数解析式,再把B(4,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数时自变量x的取值范围【详解】(1) 过点, ,反比例函数的解析式为;点在 上, ,一次函数过点, ,解得:一次函数解析式为;(2)由图可知,当或时,一次函数值大于反比例函数值【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式22、(1)10;(2)的长为【解析】(1)利用勾股定理求解;(2)过点作于,利用角平分线的性质得到CD=DE,然后根据HL定理证明,设,根据勾股定理列方程求解.【详解】解:(1) 在中, ;(2 )过点作于,平分,在和中 , .设,则在中, 解得即的长为【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,全等三角形的判定与性质,难点在于(2)多次利用勾股定理23、(1)见解析;(2)1【解析】试题分析:根据角平分线上的点到角的两边距离相等知作出A的平分线即可;根据平行四边形的性质可知AB=CD=5,ADBC,再根据角平分线的性质和平行线的性质得到BAE=BEA,再根据等腰三角形的性质和线段的和差关系即可求解试题解析:(1)如图所示:E点即为所求(2)四边形ABCD是平行四边形,AB=CD=5,ADBC,DAE=AEB,AE是A的平分线,DAE=BAE,BAE=BEA,BE=BA=5,CE=BCBE=1考点:作图复杂作图;平行四边形的性质24、(1)点B的坐标是(-5,-4);直线AB的解析式为:(2)四边形CBED是菱形.理由见解析【解析】(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BEx轴”及两点间的距离公式求得,CD=5,BE=5,且BECD,从而可以证明四边形CBED是平行四边形;然后在RtOED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形【详解】解:(1)双曲线过A(3,),.把B(-5,)代入,得. 点B的坐标是(-5,-4)设直线AB的解析式为,将 A(3,)、B(-5,-4)代入得, 解得:.直线AB的解析式为:(2)四边形CBED是菱形.理由如下: 点D的坐标是(3,0),点C的坐标是(-2,0). BE轴, 点E的坐标是(0,-4).而CD =5, BE=5,且BECD.四边形CBED是平行四边形在RtOED中,ED2OE2OD2, ED5,EDCD.CBED是菱形25、(1)=;(2)结论:AC2AGAH理由见解析;(3)AGH的面积不变m的值为或2或84.【解析】(1)证明DAC=AHC+ACH=43°,ACH+ACG=43°,即可推出AHC=ACG;(2)结论:AC2=AGAH只要证明AHCACG即可解决问题;(3)AGH的面积不变理由三角形的面积公式计算即可;分三种情形分别求解即可解决问题.【详解】(1)四边形ABCD是正方形,ABCBCDDA4,DDAB90°DACBAC43°,AC,DACAHC+ACH43°,ACH+ACG43°,AHCACG故答案为(2)结论:AC2AGAH理由:AHCACG,CAHCAG133°,AHCACG,AC2AGAH(3)AGH的面积不变理由:SAGHAHAGAC2×(4)21AGH的面积为1如图1中,当GCGH时,易证AHGBGC,可得AGBC4,AHBG8,BCAH,,AEAB如图2中,当CHHG时,易证AHBC4,BCAH,1,AEBE2如图3中,当CGCH时,易证ECBDCF22.3在BC上取一点M,使得BMBE,BMEBEM43°,BMEMCE+MEC,MCEMEC22.3°,CMEM,设BMBEm,则CMEMm,m+m4,m4(1),AE44(1)84,综上所述,满足条件的m的值为或2或84【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题26、(1)见解析(2)见解析【解析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得【详解】解:(1)如图所示,A1B1C1即为所求;(2)如图所示,DEF即为所求【点睛】本题主要考查作图位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质27、(1)证明见解析;(2);拓展:【解析】(1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明ABEACD即可;(2)由等腰三角形的性质和三角形内角和定理求出BEA=EAB=70°,证出AC=CD,由等腰三角形的性质得出ADC=DAC=70°,即可得出DAE的度数;拓展:对ABD的外心位置进行推理,即可得出结论【详解】(1)证明:点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,BD=CE,BC-BD=BC-CE,即BE=CD,B=C=40°,AB=AC,在ABE和ACD中,ABEACD(SAS);(2)解:B=C=40°,AB=BE,BEA=EAB=(180°-40°)=70°,BE=CD,AB=AC,AC=CD,ADC=DAC=(180°-40°)=70°,DAE=180°-ADC-BEA=180°-70°-70°=40°;拓展:解:若ABD的外心在其内部时,则ABD是锐角三角形BAD=140°-BDA90°BDA50°,又BDA90°,50°BDA90°【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键