2023届江苏省苏州市张家港市梁丰初级中学中考数学全真模拟试卷含解析.doc
-
资源ID:87839719
资源大小:1.27MB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届江苏省苏州市张家港市梁丰初级中学中考数学全真模拟试卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图是正方体的表面展开图,则与“前”字相对的字是()A认B真C复D习2如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )A28cm2B27cm2C21cm2D20cm23计算(ab2)3÷(ab)2的结果是()Aab4 Bab4 Cab3 Dab34下列计算正确的是()A(a2)3a6Ba2a3a6Ca3+a4a7D(ab)3ab35下列计算正确的是()A2x2+3x25x4B2x23x21C2x2÷3x2x2D2x23x26x46若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()Am2Bm2Cm2Dm27a、b是实数,点A(2,a)、B(3,b)在反比例函数y=的图象上,则()Aab0Bba0Ca0bDb0a8九章算术是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等交易其一,金轻十三两问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计)问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()ABCD9的相反数是A4BCD10体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_.12某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m的点B处,用高为0.8m的测角仪测得筒仓顶点C的仰角为63°,则筒仓CD的高约为_m(精确到0.1m,sin63°0.89,cos63°0.45,tan63°1.96)13一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是_14在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC,如果,那么点 C 叫做线段AB 的黄金分割点若点 P 是线段 MN 的黄金分割点,当 MN=1 时,PM 的长是_15如下图,在直径AB的半圆O中,弦AC、BD相交于点E,EC2,BE1 则cosBEC_16七边形的外角和等于_三、解答题(共8题,共72分)17(8分)为响应学校全面推进书香校园建设的号召,班长李青随机调查了若干同学一周课外阅读的时间(单位:小时),将获得的数据分成四组,绘制了如下统计图(:,:,:,:),根据图中信息,解答下列问题:(1)这项工作中被调查的总人数是多少?(2)补全条形统计图,并求出表示组的扇形统计图的圆心角的度数;(3)如果李青想从组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树状图的方法求出选中甲的概率18(8分)已知:如图,在ABC中,AB=BC,ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形19(8分)有这样一个问题:探究函数的图象与性质小怀根据学习函数的经验,对函数的图象与性质进行了探究下面是小怀的探究过程,请补充完成:(1)函数的自变量x的取值范围是 ;(2)列出y与x的几组对应值请直接写出m的值,m= ;(3)请在平面直角坐标系xOy中,描出表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出函数的一条性质 20(8分)在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(t,y1)和(t,y2)(其中t为常数且t0),将xt的部分沿直线yy1翻折,翻折后的图象记为G1;将xt的部分沿直线yy2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G例如:如图,当t1时,原函数yx,图象G所对应的函数关系式为y(1)当t时,原函数为yx+1,图象G与坐标轴的交点坐标是 (2)当t时,原函数为yx22x图象G所对应的函数值y随x的增大而减小时,x的取值范围是 图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由(3)对应函数yx22nx+n23(n为常数)n1时,若图象G与直线y2恰好有两个交点,求t的取值范围当t2时,若图象G在n22xn21上的函数值y随x的增大而减小,直接写出n的取值范围21(8分)如图,在四边形ABCD中,ABCD,ABC=ADC,DE垂直于对角线AC,垂足是E,连接BE(1)求证:四边形ABCD是平行四边形;(2)若AB=BE=2,sinACD= ,求四边形ABCD的面积22(10分)如图,已知二次函数的图象与x轴交于A,B两点,与y轴交于点C,的半径为,P为上一动点点B,C的坐标分别为_,_;是否存在点P,使得为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;连接PB,若E为PB的中点,连接OE,则OE的最大值_23(12分)已知关于x的一元二次方程.求证:方程有两个不相等的实数根;如果方程的两实根为,且,求m的值24如图,AB为O的直径,C为O上一点,ABC的平分线交O于点D,DEBC于点E试判断DE与O的位置关系,并说明理由;过点D作DFAB于点F,若BE=3,DF=3,求图中阴影部分的面积参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”故选B点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.2、B【解析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得【详解】解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC矩形FDCE,则 设DF=xcm,得到:解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm1【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键3、B【解析】根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故选B.4、A【解析】分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数相加,原式=,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=,计算错误;故选A点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型理解各种计算法则是解题的关键5、D【解析】先利用合并同类项法则,单项式除以单项式,以及单项式乘以单项式法则计算即可得到结果【详解】A、2x2+3x2=5x2,不符合题意;B、2x23x2=x2,不符合题意;C、2x2÷3x2=,不符合题意;D、2x23x2=6x4,符合题意,故选:D【点睛】本题主要考查了合并同类项法则,单项式除以单项式,单项式乘以单项式法则,正确掌握运算法则是解题关键6、B【解析】根据反比例函数的性质,可得m+10,从而得出m的取值范围【详解】函数的图象在其象限内y的值随x值的增大而增大,m+10,解得m-1故选B7、A【解析】解:,反比例函数的图象位于第二、四象限,在每个象限内,y随x的增大而增大,点A(2,a)、B(3,b)在反比例函数的图象上,ab0,故选A8、D【解析】根据题意可得等量关系:9枚黄金的重量=11枚白银的重量;(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可【详解】设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系9、A【解析】直接利用相反数的定义结合绝对值的定义分析得出答案【详解】-1的相反数为1,则1的绝对值是1故选A【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键10、C【解析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可【详解】小进跑800米用的时间为秒,小俊跑800米用的时间为秒,小进比小俊少用了40秒,方程是,故选C【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、小林【解析】观察图形可知,小林的成绩波动比较大,故小林是新手故答案是:小林12、40.0【解析】首先过点A作AEBD,交CD于点E,易证得四边形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后RtACE中,由三角函数的定义,而求得CE的长,继而求得筒仓CD的高.【详解】过点A作AEBD,交CD于点E,ABBD,CDBD,BAEABDBDE90°,四边形ABDE是矩形,AEBD20m,DEAB0.8m,在RtACE中,CAE63°,CEAEtan63°20×1.9639.2(m),CDCEDE39.20.840.0(m)答:筒仓CD的高约40.0m,故答案为:40.0【点睛】此题考查解直角三角形的应用仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用13、.【解析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目;全部情况的总数二者的比值就是其发生的概率的大小【详解】一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率为: ,故答案为【点睛】本题考查了概率公式的应用注意概率所求情况数与总情况数之比14、【解析】设PM=x,根据黄金分割的概念列出比例式,计算即可【详解】设PM=x,则PN=1-x,由得,化简得:x2+x-1=0,解得:x1,x2(负值舍去),所以PM的长为【点睛】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割15、【解析】分析:连接BC,则BCE90°,由余弦的定义求解.详解:连接BC,根据圆周角定理得,BCE90°,所以cosBEC.故答案为.点睛:本题考查了圆周角定理的余弦的定义,求一个锐角的余弦时,需要把这个锐角放到直角三角形中,再根据余弦的定义求解,而圆中直径所对的圆周角是直角.16、360°【解析】根据多边形的外角和等于360度即可求解【详解】解:七边形的外角和等于360°故答案为360°【点睛】本题考查了多边形的内角和外角的知识,属于基础题,解题的关键是掌握多边形的外角和等于360°三、解答题(共8题,共72分)17、(1)50人;(2)补全图形见解析,表示A组的扇形统计图的圆心角的度数为108°;(3).【解析】分析:(1)、根据B的人数和百分比得出样本容量;(2)、根据总人数求出C组的人数,根据A组的人数占总人数的百分比得出扇形的圆心角度数;(3)、根据题意列出树状图,从而得出概率详解:(1)被调查的总人数为19÷38%=50人;(2)C组的人数为50(15+19+4)=12(人),补全图形如下:表示A组的扇形统计图的圆心角的度数为360°×=108°;(3)画树状图如下,共有12个可能的结果,恰好选中甲的结果有6个, P(恰好选中甲)=.点睛:本题主要考查的是条形统计图和扇形统计图以及概率的计算法则,属于基础题型理解频数、频率与样本容量之间的关系是解题的关键18、(1)见解析 (2)见解析【解析】(1)由三角形中位线知识可得DFBG,GHBF,根据菱形的判定的判定可得四边形FBGH是菱形;(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解【详解】(1)点F、G是边AC的三等分点,AF=FG=GC又点D是边AB的中点,DHBG同理:EHBF四边形FBGH是平行四边形,连结BH,交AC于点O,OF=OG,AO=CO,AB=BC,BHFG,四边形FBGH是菱形;(2)四边形FBGH是平行四边形,BO=HO,FO=GO又AF=FG=GC,AF+FO=GC+GO,即:AO=CO四边形ABCH是平行四边形ACBH,AB=BC,四边形ABCH是正方形【点睛】本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键19、(1)x1;(2)2;(2)见解析;(4)在x1和x1上均单调递增;【解析】(1)根据分母非零即可得出x+10,解之即可得出自变量x的取值范围;(2)将y=代入函数解析式中求出x值即可;(2)描点、连线画出函数图象;(4)观察函数图象,写出函数的一条性质即可【详解】解:(1)x+10,x1故答案为x1(2)当y=时,解得:x=2故答案为2(2)描点、连线画出图象如图所示(4)观察函数图象,发现:函数在x1和x1上均单调递增【点睛】本题考查了反比例函数的性质以及函数图象,根据给定数据描点、连线画出函数图象是解题的关键20、(1)(2,0);(2)x1或x;图象G所对应的函数有最大值为;(3);n或n【解析】(1)根据题意分别求出翻转之后部分的表达式及自变量的取值范围,将y=0代入,求出x值,即可求出图象G与坐标轴的交点坐标;(2)画出函数草图,求出翻转点和函数顶点的坐标,根据图象的增减性可求出y随x的增大而减小时,x的取值范围,根据图象很容易计算出函数最大值;(3)将n1代入到函数中求出原函数的表达式,计算y=2时,x的值.据(2)中的图象,函数与y=2恰好有两个交点时t大于右边交点的横坐标且-t大于左边交点的横坐标,据此求解.画出函数草图,分别计算函数左边的翻转点A,右边的翻转点C,函数的顶点B的横坐标(可用含n的代数式表示),根据函数草图以及题意列出关于n的不等式求解即可.【详解】(1)当x时,y,当x时,翻折后函数的表达式为:yx+b,将点(,)坐标代入上式并解得:翻折后函数的表达式为:yx+2,当y0时,x2,即函数与x轴交点坐标为:(2,0);同理沿x翻折后当时函数的表达式为:yx,函数与x轴交点坐标为:(0,0),因为所以舍去.故答案为:(2,0);(2)当t时,由函数为yx22x构建的新函数G的图象,如下图所示:点A、B分别是t、t的两个翻折点,点C是抛物线原顶点,则点A、B、C的横坐标分别为、1、,函数值y随x的增大而减小时,x1或x,故答案为:x1或x;函数在点A处取得最大值,x,y()22×(),答:图象G所对应的函数有最大值为;(3)n1时,yx2+2x2,参考(2)中的图象知:当y2时,yx2+2x22,解得:x1±,若图象G与直线y2恰好有两个交点,则t1且-t>,所以;函数的对称轴为:xn,令yx22nx+n230,则xn±,当t2时,点A、B、C的横坐标分别为:2,n,2,当xn在y轴左侧时,(n0),此时原函数与x轴的交点坐标(n+,0)在x2的左侧,如下图所示,则函数在AB段和点C右侧,故:2xn,即:在2n22xn21n,解得:n;当xn在y轴右侧时,(n0),同理可得:n;综上:n或n【点睛】在做本题时,可先根据题意分别画出函数的草图,根据草图进行分析更加直观.在做第(1)问时,需注意翻转后的函数是分段函数,所以对最终的解要进行分析,排除掉自变量之外的解;(2)根据草图很直观的便可求得;(3)需注意图象G与直线y2恰好有两个交点,多于2个交点的要排除;根据草图和增减性,列出不等式,求解即可.21、(1)证明见解析;(2)S平行四边形ABCD =3 【解析】试题分析:(1)根据平行四边形的性质得出ABC+DCB=180°,推出ADC+BCD=180°,根据平行线的判定得出ADBC,根据平行四边形的判定推出即可;(2)证明ABE是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE和DE,得出AC的长,即可求出四边形ABCD的面积试题解析:(1)ABCD,ABC+DCB=180°,ABC=ADC,ADC+BCD=180°,ADBC,ABCD,四边形ABCD是平行四边形;(2)sinACD=,ACD=60°,四边形ABCD是平行四边形,ABCD,CD=AB=2,BAC=ACD=60°,AB=BE=2,ABE是等边三角形,AE=AB=2,DEAC,CDE=90°60°=30°,CE= CD=1,DE=CE=,AC=AE+CE=3,S平行四边形ABCD =2SACD =ACDE=322、(1)B(1,0),C(0,4);(2)点P的坐标为:(1,2)或(,)或(,4)或(,4);(1)【解析】试题分析:(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;(2)当PB与相切时,PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2的值,过P2作P2Ex轴于E,P2Fy轴于F,根据相似三角形的性质得到 =2,设OC=P2E=2x,CP2=OE=x,得到BE=1x,CF=2x4,于是得到FP2,EP2的值,求得P2的坐标,过P1作P1Gx轴于G,P1Hy轴于H,同理求得P1(1,2),当BCPC时,PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;(1)如图1中,连接AP,由OB=OA,BE=EP,推出OE=AP,可知当AP最大时,OE的值最大试题解析:(1)在中,令y=0,则x=±1,令x=0,则y=4,B(1,0),C(0,4);故答案为1,0;0,4;(2)存在点P,使得PBC为直角三角形,分两种情况:当PB与相切时,PBC为直角三角形,如图(2)a,连接BC,OB=1OC=4,BC=5,CP2BP2,CP2=,BP2=,过P2作P2Ex轴于E,P2Fy轴于F,则CP2FBP2E,四边形OCP2B是矩形,=2,设OC=P2E=2x,CP2=OE=x,BE=1x,CF=2x4, =2,x=,2x=,FP2=,EP2=,P2(,),过P1作P1Gx轴于G,P1Hy轴于H,同理求得P1(1,2);当BCPC时,PBC为直角三角形,过P4作P4Hy轴于H,则BOCCHP4, =,CH=,P4H=,P4(,4);同理P1(,4);综上所述:点P的坐标为:(1,2)或(,)或(,4)或(,4);(1)如图(1),连接AP,OB=OA,BE=EP,OE=AP,当AP最大时,OE的值最大,当P在AC的延长线上时,AP的值最大,最大值=,OE的最大值为故答案为23、(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的的值大于0即可;(1)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值试题解析:(1)证明:,=(m3)14×1×(m)=m11m+9=(m1)1+80,方程有两个不相等的实数根;(1),方程的两实根为,且, , ,(m3)13×(m)=7,解得,m1=1,m1=1,即m的值是1或124、(1)DE与O相切,理由见解析;(2)阴影部分的面积为2【解析】(1)直接利用角平分线的定义结合平行线的判定与性质得出DEB=EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案【详解】(1)DE与O相切,理由:连接DO,DO=BO,ODB=OBD,ABC的平分线交O于点D,EBD=DBO,EBD=BDO,DOBE,DEBC,DEB=EDO=90°,DE与O相切;(2)ABC的平分线交O于点D,DEBE,DFAB,DE=DF=3,BE=3,BD=6,sinDBF=,DBA=30°,DOF=60°,sin60°=,DO=2,则FO=,故图中阴影部分的面积为:【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键