2023届湖北省武汉市武汉一初慧泉中学中考数学对点突破模拟试卷含解析.doc
-
资源ID:87839816
资源大小:1.01MB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届湖北省武汉市武汉一初慧泉中学中考数学对点突破模拟试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,已知ABC,DCE,FEG,HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1连接AI,交FG于点Q,则QI=()A1BCD2根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k0),下列图象能正确反映p与v之间函数关系的是()ABCD3如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),ABO30°,将ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A(,)B(2,)C(,)D(,3)4小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A50,50B50,30C80,50D30,505如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )AAB=ADBAC平分BCDCAB=BDDBECDEC6如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了( )A米B米C米D米7在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是( )ABCD8用配方法解方程时,可将方程变形为( )ABCD9104的结果是( )A7 B7 C14 D1310在平面直角坐标系中,点(-1,-2)所在的象限是()A第一象限B第二象限C第三象限D第四象限二、填空题(本大题共6个小题,每小题3分,共18分)11已知、为两个连续的整数,且,则=_12如图,正五边形ABCDE和正三角形AMN都是O的内接多边形,则BOM_.13如图,在RtABC中,A=90°,ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足若DC=2,AD=1,则BE的长为_14如图,正ABC 的边长为 2,顶点 B、C 在半径为 的圆上,顶点 A在圆内,将正ABC 绕点 B 逆时针旋转,当点 A 第一次落在圆上时,则点 C 运动的路线长为 (结果保留);若 A 点落在圆上记做第 1 次旋转,将ABC 绕点 A 逆时针旋转,当点 C 第一次落在圆上记做第 2 次旋转,再绕 C 将ABC 逆时针旋转,当点 B 第一次落在圆上,记做第 3 次旋转,若此旋转下去,当ABC 完成第 2017 次旋转时,BC 边共回到原来位置 次15如图所示:在平面直角坐标系中,OCB的外接圆与y轴交于A(0,),OCB=60°,COB=45°,则OC= 16如图,在扇形OAB中,O=60°,OA=4,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,OB上,则图中阴影部分的面积为_三、解答题(共8题,共72分)17(8分)如图,B、E、C、F在同一直线上,ABDE,BECF,BDEF,求证:ACDF18(8分)如图,已知抛物线yax2+bx+1经过A(1,0),B(1,1)两点(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:yk1x+b1(k1,b1为常数,且k10),直线l2:yk2x+b2(k2,b2为常数,且k20),若l1l2,则k1k21解决问题:若直线y2x1与直线ymx+2互相垂直,则m的值是_;抛物线上是否存在点P,使得PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值19(8分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AEBF于点G,求证:AE=BF;(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AEBF于点M,探究AE与BF的数量关系,并证明你的结论;(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系; 20(8分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元求每件A种商品和每件B种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?21(8分)如图1,抛物线yax2+(a+2)x+2(a0),与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0m4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M(1)求抛物线的解析式;(2)若PN:PM1:4,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为(0°90°),连接AP2、BP2,求AP2+的最小值22(10分)如图,在ABC中,ABAC,点D在边AC上(1)作ADE,使ADEACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)(2)若BC5,点D是AC的中点,求DE的长23(12分)如图,在ABC中,ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF(1)判断直线EF与O的位置关系,并说明理由;(2)若A=30°,求证:DG=DA;(3)若A=30°,且图中阴影部分的面积等于2,求O的半径的长24如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O(1)若AP=1,则AE= ;(2)求证:点O一定在APE的外接圆上;当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】解:ABC、DCE、FEG是三个全等的等腰三角形,HI=AB=2,GI=BC=1,BI=2BC=2,=,=ABI=ABC,ABICBA,=AB=AC,AI=BI=2ACB=FGE,ACFG,=,QI=AI=故选D点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解ABCDEF,ACDEFG是解题的关键2、C【解析】【分析】根据题意有:pv=k(k为常数,k0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.【详解】pv=k(k为常数,k0)p=(p0,v0,k0),故选C【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限3、A【解析】解:四边形AOBC是矩形,ABO=10°,点B的坐标为(0,),AC=OB=,CAB=10°,BC=ACtan10°=×=1将ABC沿AB所在直线对折后,点C落在点D处,BAD=10°,AD=过点D作DMx轴于点M,CAB=BAD=10°,DAM=10°,DM=AD=,AM=×cos10°=,MO=1=,点D的坐标为(,)故选A4、A【解析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元) 故选A点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系5、C【解析】解:AC垂直平分BD,AB=AD,BC=CD,AC平分BCD,平分BCD,BE=DEBCE=DCE在RtBCE和RtDCE中,BE=DE,BC=DC,RtBCERtDCE(HL)选项ABD都一定成立故选C6、A【解析】利用锐角三角函数关系即可求出小刚上升了的高度【详解】在RtAOB中,AOB=90°,AB=300米,BO=ABsin=300sin米故选A【点睛】此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键7、B【解析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】由题意,设金色纸边的宽为,得出方程:(80+2x)(50+2x)=5400,整理后得:故选:B.【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.8、D【解析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.9、C【解析】解:104=1故选C10、C【解析】:点的横纵坐标均为负数,点(-1,-2)所在的象限是第三象限,故选C二、填空题(本大题共6个小题,每小题3分,共18分)11、11【解析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案【详解】ab,a、b为两个连续的整数,a5,b6,ab11.故答案为11.【点睛】本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.12、48°【解析】连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可【详解】连接OA,五边形ABCDE是正五边形,AOB=72°,AMN是正三角形,AOM=120°,BOM=AOM-AOB=48°,故答案为48°点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键13、 【解析】DE是BC的垂直平分线,DB=DC=2,BD是ABC的平分线,A=90°,DEBC,DE=AD=1,BE=,故答案为 点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键14、,1.【解析】首先连接OA、OB、OC,再求出CBC的大小,进而利用弧长公式问题即可解决因为ABC是三边在正方形CBAC上,BC边每12次回到原来位置,2017÷12=1.08,推出当ABC完成第2017次旋转时,BC边共回到原来位置1次.【详解】如图,连接OA、OB、OCOB=OC=,BC=2, OBC是等腰直角三角形,OBC=45°;同理可证:OBA=45°,ABC=90°;ABC=60°,ABA=90°-60°=30°,CBC=ABA=30°,当点A第一次落在圆上时,则点C运动的路线长为:ABC是三边在正方形CBAC上,BC边每12次回到原来位置,2017÷12=1.08,当ABC完成第2017次旋转时,BC边共回到原来位置1次,故答案为:,1【点睛】本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题15、1+【解析】试题分析:连接AB,由圆周角定理知AB必过圆心M,RtABO中,易知BAO=OCB=60°,已知了OA=,即可求得OB的长;过B作BDOC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长解:连接AB,则AB为M的直径RtABO中,BAO=OCB=60°,OB=OA=×=过B作BDOC于DRtOBD中,COB=45°,则OD=BD=OB=RtBCD中,OCB=60°,则CD=BD=1OC=CD+OD=1+故答案为1+点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键16、88 【解析】连接EF、OC交于点H,根据正切的概念求出FH,根据菱形的面积公式求出菱形FOEC的面积,根据扇形面积公式求出扇形OAB的面积,计算即可【详解】连接EF、OC交于点H,则OH=2,FH=OH×tan30°=2,菱形FOEC的面积=×4×4=8,扇形OAB的面积=8,则阴影部分的面积为88,故答案为88【点睛】本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键三、解答题(共8题,共72分)17、见解析【解析】由BECF可得BCEF,即可判定,再利用全等三角形的性质证明即可【详解】BECF,即BCEF,又ABDE,BDEF,在与中,ACDF【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.18、(1)yx2+x+1;(2)-;点P的坐标(6,14)(4,5);(3).【解析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;(3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A,B点坐标代入,得,解得,抛物线的解析式为y;(2)由直线y2x1与直线ymx+2互相垂直,得2m1,即m;故答案为;AB的解析式为当PAAB时,PA的解析式为y2x2,联立PA与抛物线,得,解得(舍),即P(6,14);当PBAB时,PB的解析式为y2x+3,联立PB与抛物线,得,解得(舍),即P(4,5),综上所述:PAB是以AB为直角边的直角三角形,点P的坐标(6,14)(4,5);(3)如图:,M(t,t2+t+1),Q(t, t+),MQt2+SMABMQ|xBxA|(t2+)×2t2+,当t0时,S取最大值,即M(0,1)由勾股定理,得AB,设M到AB的距离为h,由三角形的面积,得h点M到直线AB的距离的最大值是【点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键19、(1)证明见解析;(2)AE=BF,(3)AE=BF;【解析】(1)根据正方形的性质,可得ABC与C的关系,AB与BC的关系,根据两直线垂直,可得AMB的度数,根据直角三角形锐角的关系,可得ABM与BAM的关系,根据同角的余角相等,可得BAM与CBF的关系,根据ASA,可得ABEBCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到ABC=C,由余角的性质得到BAM=CBF,根据相似三角形的性质即可得到结论;(3)结论:AE=BF证明方法类似(2);【详解】(1)证明:四边形ABCD是正方形,ABC=C,AB=BCAEBF,AMB=BAM+ABM=90°,ABM+CBF=90°,BAM=CBF在ABE和BCF中,ABEBCF(ASA),AE=BF;(2)解:如图2中,结论:AE=BF,理由:四边形ABCD是矩形,ABC=C,AEBF,AMB=BAM+ABM=90°,ABM+CBF=90°,BAM=CBF,ABEBCF,AE=BF(3)结论:AE=BF理由:四边形ABCD是矩形,ABC=C,AEBF,AMB=BAM+ABM=90°,ABM+CBF=90°,BAM=CBF,ABEBCF,AE=BF【点睛】本题考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键20、(1)200元和100元(2)至少6件【解析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34a)件根据获得的利润不低于4000元,建立不等式求出其解即可【详解】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元由题意,得,解得:,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元(2)设购进A种商品a件,则购进B种商品(34a)件由题意,得200a+100(34a)4000,解得:a6答:威丽商场至少需购进6件A种商品21、(1);(2)m3;(3)【解析】(1)本题需先根据图象过A点,代入即可求出解析式;(2)由OABPAN可用m表示出PN,且可表示出PM,由条件可得到关于m的方程,则可求得m的值;(3)在y轴上取一点Q,使,可证的P2OBQOP2,则可求得Q点坐标,则可把AP2+BP2转换为AP2+QP2,利用三角形三边关系可知当A、P2、Q三点在一条线上时,有最小值,则可求出答案.【详解】解:(1)A(4,0)在抛物线上,016a+4(a+2)+2,解得a,抛物线的解析式为y;(2)令x0可得y2,OB2,OPm,AP4m,PMx轴,OABPAN,M在抛物线上,PM+2,PN:MN1:3,PN:PM1:4,解得m3或m4(舍去);(3)在y轴上取一点Q,使,如图,由(2)可知P1(3,0),且OB2,且P2OBQOP2,P2OBQOP2,当Q(0,)时,QP2,AP2+BP2AP2+QP2AQ,当A、P2、Q三点在一条线上时,AP2+QP2有最小值,A(4,0),Q(0,),AQ,即AP2+BP2的最小值为【点睛】本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及线段和最小值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,难度相对较大.22、(1)作图见解析;(2)【解析】(1)根据作一个角等于已知角的步骤解答即可;(2)由作法可得DEBC,又因为D是AC的中点,可证DE为ABC的中位线,从而运用三角形中位线的性质求解【详解】解:(1)如图,ADE为所作;(2)ADE=ACB,DEBC,点D是AC的中点,DE为ABC的中位线,DE=BC=23、(1)EF是O的切线,理由详见解析;(1)详见解析;(3)O的半径的长为1【解析】(1)连接OE,根据等腰三角形的性质得到A=AEO,B=BEF,于是得到OEG=90°,即可得到结论;(1)根据含30°的直角三角形的性质证明即可;(3)由AD是O的直径,得到AED=90°,根据三角形的内角和得到EOD=60°,求得EGO=30°,根据三角形和扇形的面积公式即可得到结论【详解】解:(1)连接OE,OA=OE,A=AEO,BF=EF,B=BEF,ACB=90°,A+B=90°,AEO+BEF=90°,OEG=90°,EF是O的切线;(1)AED=90°,A=30°,ED=AD,A+B=90°,B=BEF=60°,BEF+DEG=90°,DEG=30°,ADE+A=90°,ADE=60°,ADE=EGD+DEG,DGE=30°,DEG=DGE,DG=DE,DG=DA;(3)AD是O的直径,AED=90°,A=30°,EOD=60°,EGO=30°,阴影部分的面积 解得:r1=4,即r=1,即O的半径的长为1【点睛】本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键24、(1);(2)证明见解析;(3)【解析】试题分析:(1)由正方形的性质得出A=B=EPG=90°,PFEG,AB=BC=4,OEP=45°,由角的互余关系证出AEP=PBC,得出APEBCP,得出对应边成比例即可求出AE的长;(2)A、P、O、E四点共圆,即可得出结论;连接OA、AC,由勾股定理求出AC=,由圆周角定理得出OAP=OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设APE的外接圆的圆心为M,作MNAB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可试题解析:(1)四边形ABCD、四边形PEFG是正方形,A=B=EPG=90°,PFEG,AB=BC=4,OEP=45°,AEP+APE=90°,BPC+APE=90°,AEP=PBC,APEBCP,即,解得:AE=,故答案为:;(2)PFEG,EOF=90°,EOF+A=180°,A、P、O、E四点共圆,点O一定在APE的外接圆上;连接OA、AC,如图1所示:四边形ABCD是正方形,B=90°,BAC=45°,AC=,A、P、O、E四点共圆,OAP=OEP=45°,点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,即点O经过的路径长为;(3)设APE的外接圆的圆心为M,作MNAB于N,如图2所示:则MNAE,ME=MP,AN=PN,MN=AE,设AP=x,则BP=4x,由(1)得:APEBCP,即,解得:AE= =,x=2时,AE的最大值为1,此时MN的值最大=×1=,即APE的圆心到AB边的距离的最大值为【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明APEBCP是解题的关键.