2023届湖南省株洲市醴陵市达标名校中考数学押题试卷含解析.doc
-
资源ID:87840114
资源大小:738.50KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届湖南省株洲市醴陵市达标名校中考数学押题试卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A5BCD2已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )A20B30C40D503如图是婴儿车的平面示意图,其中ABCD,1=120°,3=40°,那么2的度数为( )A80°B90°C100°D102°4若关于的一元二次方程的一个根是0,则的值是( )A1B-1C1或-1D5已知一组数据:12,5,9,5,14,下列说法不正确的是( )A平均数是9B中位数是9C众数是5D极差是56某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套设安排x名工人生产螺钉,则下面所列方程正确的是( )A2×1000(26x)=800xB1000(13x)=800xC1000(26x)=2×800xD1000(26x)=800x7下列事件中是必然事件的是()A早晨的太阳一定从东方升起B中秋节的晚上一定能看到月亮C打开电视机,正在播少儿节目D小红今年14岁,她一定是初中学生8如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()ABCD9方程2x2x3=0的两个根为()Ax1=,x2=1Bx1=,x2=1Cx1=,x2=3Dx1=,x2=310下列方程中,是一元二次方程的是()A2xy=3Bx2+=2Cx2+1=x21Dx(x1)=0二、填空题(本大题共6个小题,每小题3分,共18分)11如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是_12如图,在ABC中,ABC=90°,AB=CB,F为AB延长线上一点,点E在BC上,且AE=CF,若CAE=32°,则ACF的度数为_°13如图,点 A、B、C 在O 上,O 半径为 1cm,ACB=30°,则的长是_14如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到AME当AB=1时,AME的面积记为S1;当AB=2时,AME的面积记为S2;当AB=3时,AME的面积记为S3;当AB=n时,AME的面积记为Sn当n2时,SnSn1= 15我们知道:1+3=4,1+3+5=9,1+3+5+7=16,观察下面的一列数:-1,2,,-3, 4,-5,6,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 16口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_三、解答题(共8题,共72分)17(8分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元今年的总收入和总支出计划各是多少万元?18(8分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图(1)测试不合格人数的中位数是 (2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图19(8分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_人,扇形统计图中“了解”部分所对应扇形的圆心角为_°.(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_人.(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.20(8分)如图,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中,可知,求得_如图,在矩形的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M求证:若,求的度数 21(8分)如图,直线y1=x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点求y与x之间的函数关系式;直接写出当x0时,不等式x+b的解集;若点P在x轴上,连接AP把ABC的面积分成1:3两部分,求此时点P的坐标22(10分)如图,在四边形中,为的中点,于点,求的度数23(12分)已知矩形ABCD的一条边AD8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处如图,已知折痕与边BC交于点O,连接AP、OP、OA(1)求证:;(2)若OCP与PDA的面积比为1:4,求边AB的长24定义:如果把一条抛物线绕它的顶点旋转180°得到的抛物线我们称为原抛物线的“孪生抛物线”(1)求抛物线yx22x的“孪生抛物线”的表达式;(2)若抛物线yx22x+c的顶点为D,与y轴交于点C,其“孪生抛物线”与y轴交于点C,请判断DCC的形状,并说明理由:(3)已知抛物线yx22x3与y轴交于点C,与x轴正半轴的交点为A,那么是否在其“孪生抛物线”上存在点P,在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形?若存在,求出P点的坐标;若不存在,说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】先利用勾股定理求出AC的长,然后证明AEOACD,根据相似三角形对应边成比例列式求解即可【详解】AB=6,BC=8,AC=10(勾股定理);AO=AC=5,EOAC,AOE=ADC=90°,EAO=CAD,AEOACD,即 ,解得,AE=,DE=8=,故选:C【点睛】本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键2、A【解析】分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.详解:根据题意得: , 计算得出:n=20, 故选A.点睛:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率.3、A【解析】分析:根据平行线性质求出A,根据三角形内角和定理得出2=180°1A,代入求出即可详解:ABCD.A=3=40°,1=60°,2=180°1A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.4、B【解析】根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可【详解】把x=0代入方程得,解得a=±1原方程是一元二次方程,所以 ,所以,故故答案为B【点睛】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解5、D【解析】分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案平均数为(12+5+9+5+14)÷5=9,故选项A正确;重新排列为5,5,9,12,14,中位数为9,故选项B正确;5出现了2次,最多,众数是5,故选项C正确;极差为:145=9,故选项D错误故选D6、C【解析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.7、A【解析】必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解【详解】解:B、C、D选项为不确定事件,即随机事件故错误;一定发生的事件只有第一个答案,早晨的太阳一定从东方升起故选A【点睛】该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件8、D【解析】根据轴对称图形的概念求解【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形故选D【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形9、A【解析】利用因式分解法解方程即可【详解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1故选A【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)10、D【解析】试题解析:含有两个未知数,不是整式方程,C没有二次项.故选D.点睛:一元二次方程需要满足三个条件:含有一个未知数,未知数的最高次数是2,整式方程.二、填空题(本大题共6个小题,每小题3分,共18分)11、2n+1【解析】观察摆放的一系列图形,可得到依次的周长分别是3,4,5,6,7,从中得到规律,根据规律写出第n个图形的周长解:由已知一系列图形观察图形依次的周长分别是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,所以第n个图形的周长为:2+n故答案为2+n此题考查的是图形数字的变化类问题,关键是通过观察分析得出规律,根据规律求解12、58【解析】根据HL证明RtCBFRtABE,推出FCB=EAB,求出CAB=ACB=45°,求出BCF=BAE=13°,即可求出答案【详解】解:ABC=90°,ABE=CBF=90°,在RtCBF和RtABE中 RtCBFRtABE(HL),FCB=EAB,AB=BC,ABC=90°,CAB=ACB=45°BAE=CABCAE=45°32°=13°,BCF=BAE=13°,ACF=BCF+ACB=45°+13°=58°故答案为58【点睛】本题考查了全等三角形的性质和判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等13、.【解析】根据圆周角定理可得出AOB=60°,再根据弧长公式的计算即可【详解】ACB=30°,AOB=60°,OA=1cm,的长=cm.故答案为:【点睛】本题考查了弧长的计算以及圆周角定理,解题关键是掌握弧长公式l=14、【解析】连接BE,在线段AC同侧作正方形ABMN及正方形BCEF,BEAMAME与AMB同底等高AME的面积=AMB的面积当AB=n时,AME的面积为,当AB=n1时,AME的面积为当n2时,15、2【解析】先求出19行有多少个数,再加3就等于第20行第三个数是多少然后根据奇偶性来决定负正【详解】1行1个数,2行3个数,3行5个数,4行7个数,19行应有2×19-1=37个数到第19行一共有1+3+5+7+9+37=19×19=1第20行第3个数的绝对值是1+3=2又2是偶数,故第20行第3个数是216、【解析】先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可.【详解】从中随意摸出两个球的所有可能的结果个数是12,随意摸出两个球是红球的结果个数是6,从中随意摸出两个球的概率=;故答案为:.【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比三、解答题(共8题,共72分)17、今年的总收入为220万元,总支出为1万元【解析】试题分析:设去年总收入为x万元,总支出为y万元,根据利润=收入-支出即可得出关于x、y的二元一次方程组,解之即可得出结论试题解析:设去年的总收入为x万元,总支出为y万元根据题意,得,解这个方程组,得,(1+10%)x=220,(1-20%)y=1答:今年的总收入为220万元,总支出为1万元18、(1)1;(2)这两次测试的平均增长率为20%;(3)55%【解析】(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数÷参加测试的总人数×100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解【详解】解:(1)将四次测试结果排序,得:30,40,50,60,测试不合格人数的中位数是(40+50)÷21故答案为1;(2)每次测试不合格人数的平均数为(60+40+30+50)÷41(人),第四次测试合格人数为1×21872(人)设这两次测试的平均增长率为x,根据题意得:50(1+x)272,解得:x10.220%,x22.2(不合题意,舍去),这两次测试的平均增长率为20%;(3)50×(1+20%)60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%1%,11%55%补全条形统计图与扇形统计图如解图所示【点睛】本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据19、(1)60,30;(2)300;(3) 【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)利用样本估计总体的方法,即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到女生A的情况,再利用概率公式求解即可求得答案【详解】解:(1)了解很少的有30人,占50%,接受问卷调查的学生共有:30÷50%=60(人);了解部分的人数为60(15+30+10)=5,扇形统计图中“了解”部分所对应扇形的圆心角为:×360°=30°;故答案为60,30;(2)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人,故答案为300;(3)画树状图如下:所有等可能的情况有6种,其中抽到女生A的情况有2种,所以P(抽到女生A)=【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图用到的知识点为:概率=所求情况数与总情况数之比20、阅读发现:90°;(1)证明见解析;(2)100°【解析】阅读发现:只要证明,即可证明拓展应用:欲证明,只要证明即可根据即可计算【详解】解:如图中,四边形ABCD是正方形,故答案为为等边三角形,为等边三角形,四边形ABCD为矩形,在和中,;,【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型21、(1);(2)x1;(3)P(,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x0时,不等式x+b的解集为x1;(3)分两种情况进行讨论,AP把ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3=,或OP=4=,进而得出点P的坐标详解:(1)把A(1,m)代入y1=x+4,可得m=1+4=3,A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,y与x之间的函数关系式为:y=;(2)A(1,3),当x0时,不等式x+b的解集为:x1;(3)y1=x+4,令y=0,则x=4,点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,b=,y2=x+,令y2=0,则x=3,即C(3,0),BC=7,AP把ABC的面积分成1:3两部分,CP=BC=,或BP=BC=OP=3=,或OP=4=,P(,0)或(,0)点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点22、【解析】连接,根据线段垂直平分线的性质得到,根据等腰三角形的性质、三角形内角和定理计算即可【详解】连接,为的中点,于点,【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键23、 (1)详见解析;(2)10.【解析】只需证明两对对应角分别相等可得两个三角形相似;故.根据相似三角形的性质求出PC长以及AP与OP的关系,然后在RtPCO中运用勾股定理求出OP长,从而求出AB长【详解】四边形ABCD是矩形,AD=BC,DC=AB,DAB=B=C=D=90°.由折叠可得:AP=AB,PO=BO,PAO=BAO,APO=B.APO=90°.APD=90°CPO=POC.D=C,APD=POC.OCPPDA.OCP与PDA的面积比为1:4,OCPD=OPPA=CPDA=14=12.PD=2OC,PA=2OP,DA=2CP.AD=8,CP=4,BC=8.设OP=x,则OB=x,CO=8x.在PCO中,C=90,CP=4,OP=x,CO=8x,x2=(8x)2+42.解得:x=5.AB=AP=2OP=10.边AB的长为10.【点睛】本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.24、(1)y=-(x-1)²=-x²+2x-2;(2)等腰Rt,(3)P1(3,-8),P2(-3,-20).【解析】(1)当抛物线绕其顶点旋转180°后,抛物线的顶点坐标不变,只是开口方向相反,则可根据顶点式写出旋转后的抛物线解析式;(2)可分别求出原抛物线和其“孪生抛物线”与y轴的交点坐标C、C,由点的坐标可知DCC是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孪生抛物线”为y=-x2+2x-5,当AC为对角线时,由中点坐标可知点P不存在,当AC为边时,分两种情况可求得点P的坐标【详解】(1)抛物线y=x2-2x化为顶点式为y=(x-1)2-1,顶点坐标为(1,-1),由于抛物线y=x2-2x绕其顶点旋转180°后抛物线的顶点坐标不变,只是开口方向相反,则所得抛物线解析式为y=-(x-1)2-1=-x2+2x-2;(2)DCC'是等腰直角三角形,理由如下:抛物线y=x2-2x+c=(x-1)2+c-1,抛物线顶点为D的坐标为(1,c-1),与y轴的交点C的坐标为(0,c),其“孪生抛物线”的解析式为y=-(x-1)2+c-1,与y轴的交点C的坐标为(0,c-2),CC'=c-(c-2)=2,点D的横坐标为1,CDC'=90°,由对称性质可知DC=DC,DCC'是等腰直角三角形;(3)抛物线y=x2-2x-3与y轴交于点C,与x轴正半轴的交点为A,令x=0,y=-3,令y=0时,y=x2-2x-3,解得x1=-1,x2=3,C(0,-3),A(3,0),y=x2-2x-3=(x-1)2-4,其“孪生抛物线”的解析式为y=-(x-1)2-4=-x2+2x-5,若A、C为平行四边形的对角线,其中点坐标为(,),设P(a,-a2+2a-5),A、C、P、Q为顶点的四边形为平行四边形,Q(0,a-3),化简得,a2+3a+5=0,0,方程无实数解,此时满足条件的点P不存在,若AC为平行四边形的边,点P在y轴右侧,则APCQ且AP=CQ,点C和点Q在y轴上,点P的横坐标为3,把x=3代入“孪生抛物线”的解析式y=-32+2×3-5=-9+6-5=-8,P1(3,-8),若AC为平行四边形的边,点P在y轴左侧,则AQCP且AQ=CP,点P的横坐标为-3,把x=-3代入“孪生抛物线”的解析式y=-9-6-5=-20,P2(-3,-20)原抛物线的“孪生抛物线”上存在点P1(3,-8),P2(-3,-20),在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形【点睛】本题是二次函数综合题型,主此题主要考查了根据二次函数的图象的变换求抛物线的解析式,解题的关键是求出旋转后抛物线的顶点坐标以及确定出点P的位置,注意分情况讨论