2023届陕西省宝鸡市陈仓区市级名校中考考前最后一卷数学试卷含解析.doc
-
资源ID:87840437
资源大小:687KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届陕西省宝鸡市陈仓区市级名校中考考前最后一卷数学试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列图形中,既是轴对称图形又是中心对称图形的是()A等边三角形B菱形C平行四边形D正五边形2我国古代数学著作增删算法统宗记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺设绳索长x尺,竿长y尺,则符合题意的方程组是()ABCD3等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是( )A9 cm B12 cm C9 cm或12 cm D14 cm4下列各式中,正确的是( )At5·t5 = 2t5 Bt4+t2 = t 6 Ct3·t4 = t12 Dt2·t3 = t55一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )快车追上慢车需6小时;慢车比快车早出发2小时;快车速度为46km/h;慢车速度为46km/h; A、B两地相距828km;快车从A地出发到B地用了14小时A2个B3个C4个D5个6“绿水青山就是金山银山”某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()ABCD7若一个凸多边形的内角和为720°,则这个多边形的边数为A4B5C6D78某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是( )成绩(分)3029282618人数(人)324211A该班共有40名学生B该班学生这次考试成绩的平均数为29.4分C该班学生这次考试成绩的众数为30分D该班学生这次考试成绩的中位数为28分9计算-5+1的结果为( )A-6B-4C4D610如图,直线AB、CD相交于点O,EOCD,下列说法错误的是( )AAODBOCBAOEBOD90°CAOCAOEDAODBOD180°11若关于x、y的方程组有实数解,则实数k的取值范围是()Ak4Bk4Ck4Dk412李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时)22.533.54学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是( )A众数是8B中位数是3C平均数是3D方差是0.34二、填空题:(本大题共6个小题,每小题4分,共24分)13已知点(1,m)、(2,n )在二次函数yax22ax1的图象上,如果mn,那么a_0(用“”或“”连接)14如图,在RtABC中,ACB90°,A30°,BC2,点D是边AB上的动点,将ACD沿CD所在的直线折叠至CDA的位置,CA'交AB于点E若A'ED为直角三角形,则AD的长为_15如图,在ABC中,ACB=90°,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tanCBD=,则BD=_16化简:÷(1)=_17计算×3结果等于_18如图,已知P是线段AB的黄金分割点,且PAPB若S1表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_S2.(填“”“="”“" ”)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,RtABC中,C=90°,O是RtABC的外接圆,过点C作O的切线交BA的延长线于点E,BDCE于点D,连接DO交BC于点M.(1)求证:BC平分DBA;(2)若,求的值20(6分)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角为45°,从楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角为30°.已知树高EF=6米,求塔CD的高度(结果保留根号).21(6分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元求y与x的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?22(8分)如图,在建筑物M的顶端A处测得大楼N顶端B点的仰角=45°,同时测得大楼底端A点的俯角为=30°已知建筑物M的高CD=20米,求楼高AB为多少米?(1.732,结果精确到0.1米)23(8分)先化简,后求值:a2a4a8÷a2+(a3)2,其中a=124(10分)RtABC中,ABC=90°,以AB为直径作O交AC边于点D,E是边BC的中点,连接DE,OD(1)如图,求ODE的大小;(2)如图,连接OC交DE于点F,若OF=CF,求A的大小25(10分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛 若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是 若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率26(12分) (1)计算:|1|(2017)0()13tan30°;(2)化简:()÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值27(12分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长(结果精确到0.1米)参考数据:sin36°0.59,cos36°0.1,tan36°0.73,取1.414参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内一个图形绕某个点旋转180°,如果旋转前后的图形能互相重合,那么这个图形叫做中心对称图形,分别判断各选项即可解答.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;B、菱形是轴对称图形,也是中心对称图形,故此选项正确;C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;D、正五边形是轴对称图形,不是中心对称图形,故此选项错误故选:B【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握是解题的关键.2、A【解析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组【详解】设索长为x尺,竿子长为y尺,根据题意得:故选A【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键3、B【解析】当腰长是2 cm时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm时,因为5+5>2,符合三角形三边关系,此时周长是12 cm故选B4、D【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.5、B【解析】根据图形给出的信息求出两车的出发时间,速度等即可解答【详解】解:两车在276km处相遇,此时快车行驶了4个小时,故错误慢车0时出发,快车2时出发,故正确快车4个小时走了276km,可求出速度为69km/h,错误慢车6个小时走了276km,可求出速度为46km/h,正确慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确快车2时出发,14时到达,用了12小时,错误故答案选B【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键6、C【解析】分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:,即故选C点睛:考查了由实际问题抽象出分式方程找到关键描述语,找到合适的等量关系是解决问题的关键7、C【解析】设这个多边形的边数为n,根据多边形的内角和定理得到(n2)×180°=720°,然后解方程即可【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n2)180°=720°解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.8、D【解析】A.32+4+2+1+1=40(人),故A正确;B. (30×32+29×4+28×2+26+18)÷40=29.4(分),故B正确;C. 成绩是30分的人有32人,最多,故C 正确;D. 该班学生这次考试成绩的中位数为30分,故D错误;9、B【解析】根据有理数的加法法则计算即可【详解】解:-5+1=-(5-1)=-1故选B【点睛】本题考查了有理数的加法10、C【解析】根据对顶角性质、邻补角定义及垂线的定义逐一判断可得【详解】A、AOD与BOC是对顶角,所以AOD=BOC,此选项正确;B、由EOCD知DOE=90°,所以AOE+BOD=90°,此选项正确;C、AOC与BOD是对顶角,所以AOC=BOD,此选项错误;D、AOD与BOD是邻补角,所以AOD+BOD=180°,此选项正确;故选C【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义11、C【解析】利用根与系数的关系可以构造一个两根分别是x,y的一元二次方程,方程有实数根,用根的判别式0来确定k的取值范围【详解】解:xyk,x+y4,根据根与系数的关系可以构造一个关于m的新方程,设x,y为方程的实数根 解不等式得 故选:C【点睛】本题考查了一元二次方程的根的判别式的应用和根与系数的关系解题的关键是了解方程组有实数根的意义12、B【解析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可【详解】解: A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=,所以此选项不正确;D、S2=×(23.35)2+2(2.53.35)2+8(33.35)2+6(3.53.35)2+3(43.35)2=0.2825,所以此选项不正确;故选B【点睛】本题考查方差;加权平均数;中位数;众数二、填空题:(本大题共6个小题,每小题4分,共24分)13、>;【解析】=a(x-1)2-a-1,抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m)、(2,n)在二次函数的图像上,|11|21|,且mn, a>0.故答案为>14、3或1【解析】分两种情况:情况一:如图一所示,当A'DE=90°时;情况二:如图二所示,当A'ED=90°时.【详解】解:如图,当A'DE=90°时,A'ED为直角三角形,A'=A=30°,A'ED=60°=BEC=B,BEC是等边三角形,BE=BC=1,又RtABC中,AB=1BC=4,AE=1,设AD=A'D=x,则DE=1x,RtA'DE中,A'D=DE,x=(1x),解得x=3,即AD的长为3;如图,当A'ED=90°时,A'ED为直角三角形,此时BEC=90°,B=60°,BCE=30°,BE=BC=1,又RtABC中,AB=1BC=4,AE=41=3,DE=3x,设AD=A'D=x,则RtA'DE中,A'D=1DE,即x=1(3x),解得x=1,即AD的长为1;综上所述,即AD的长为3或1故答案为3或1【点睛】本题考查了翻折变换,勾股定理,等腰直角三角形的判定和性质等知识,添加辅助线,构造直角三角形,学会运用分类讨论是解题的关键.15、2【解析】由tanCBD= 设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案【详解】解:在RtBCD中,tanCBD=,设CD=3a、BC=4a,则BD=AD=5a,AC=AD+CD=5a+3a=8a,在RtABC中,由勾股定理可得(8a)2+(4a)2=82,解得:a= 或a=-(舍),则BD=5a=2,故答案为2【点睛】本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图16、【解析】直接利用分式的混合运算法则即可得出.【详解】原式.故答案为:.【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键.17、1【解析】根据二次根式的乘法法则进行计算即可.【详解】 故答案为:1【点睛】考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.18、=【解析】黄金分割点,二次根式化简【详解】设AB=1,由P是线段AB的黄金分割点,且PAPB,根据黄金分割点的,AP=,BP=S1=S1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)证明见解析;(2) 【解析】分析:(1)如下图,连接OC,由已知易得OCDE,结合BDDE可得OCBD,从而可得1=2,结合由OB=OC所得的1=3,即可得到2=3,从而可得BC平分DBA;(2)由OCBD可得EBDEOC和DBMOCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.详解:(1)证明:连结OC,DE与O相切于点C,OCDE.BDDE,OCBD. . 1=2,OB=OC,1=3,2=3,即BC平分DBA. . (2)OCBD,EBDEOC,DBMOCM,. ,设EA=2k,AO=3k,OC=OA=OB=3k.点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OCDE结合BDDE得到OCBD是解答第1小题的关键;(2)解答第2小题的关键是由OCBD得到EBDEOC和DBMOCM这样利用相似三角形的性质结合已知条件即可求得所求值了.20、(6+2)米【解析】根据题意求出BAD=ADB=45°,进而根据等腰直角三角形的性质求得FD,在RtPEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在RtPCG中,继而可求出CG的长度【详解】由题意可知BAD=ADB=45°,FD=EF=6米,在RtPEH中,tan=,BF=5,PG=BD=BF+FD=5+6,tan= ,CG=(5+6)·=5+2,CD=(6+2)米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度21、(1)y=5x2+110x+1200;(2) 售价定为189元,利润最大1805元【解析】利润等于(售价成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y(200x170)(40+5x)5x2+110x+1200;(2)y5x2+110x+12005(x11)2+1805,抛物线开口向下,当x11时,y有最大值1805,答:售价定为189元,利润最大1805元;【点睛】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键22、楼高AB为54.6米【解析】过点C作CEAB于E,解直角三角形求出CE和CE的长,进而求出AB的长【详解】解:如图,过点C作CEAB于E,则AE=CD=20,CE=20,BE=CEtan=20×tan45°=20×1=20,AB=AE+EB=20+2020×2.73254.6(米),答:楼高AB为54.6米【点睛】此题主要考查了仰角与俯角的应用,根据已知构造直角三角形利用锐角三角函数关系得出是解题关键23、1【解析】先进行同底数幂的乘除以及幂的乘方运算,再合并同类项得到化简后的式子,将a的值代入化简后的式子计算即可.【详解】原式=a6a6+a6=a6,当a=1时,原式=1【点睛】本题主要考查同底数幂的乘除以及幂的乘方运算法则.24、(1)ODE=90°;(2)A=45°.【解析】分析:()连接OE,BD,利用全等三角形的判定和性质解答即可; ()利用中位线的判定和定理解答即可详解:()连接OE,BD AB是O的直径,ADB=90°,CDB=90° E点是BC的中点,DE=BC=BE OD=OB,OE=OE,ODEOBE,ODE=OBE ABC=90°,ODE=90°; ()CF=OF,CE=EB,FE是COB的中位线,FEOB,AOD=ODE,由()得ODE=90°,AOD=90° OA=OD,A=ADO=点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答25、 (1);(2)【解析】1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案【详解】解:(1)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,恰好选到丙的概率是: ;(2)画树状图得:共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,恰好选中甲、乙两人的概率为: 【点睛】此题考查的是用列表法或树状图法求概率注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比26、(1)-2(2)a+3,7【解析】(1)先根据绝对值、零次方、负整数指数幂、立方根的意义和特殊角的三角函数值把每项化简,再按照实数的运算法则计算即可;(2)先根据分式的运算法则把()÷化简,再从2,3,4,5中选一个使原分式有意义的值代入计算即可.【详解】(1)原式1+1-4-3×+2=-2;(2)原式-÷(-)÷=×=a+3,a3,2,3,a4或a5,取a4,则原式7.【点睛】本题考查了实数的混合运算,分式的化简求值,熟练掌握特殊角的三角函数值、负整数指数幂、分式的运算法则是解答本题的关键.27、新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m【解析】根据题意得出:A=36°,CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长【详解】解:如图,作CDAB于点D,由题意可得:A=36°,CBD=15°,BC=1在RtBCD中,sinCBD=,CD=BCsinCBD=2CBD=15°,BD=CD=2在RtACD中,sinA=,tanA=,AC=1.8,AD=,AB=ADBD=2=2×1.1113.872.83=1.211.2答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m【点睛】本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键