2023届湖北省武汉汉阳区四校联考中考数学押题卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是( )A甲组同学身高的众数是160B乙组同学身高的中位数是161C甲组同学身高的平均数是161D两组相比,乙组同学身高的方差大2如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,O的半径为1,则APBP的最小值为A1BCD3不等式组 中两个不等式的解集,在数轴上表示正确的是 ABCD4实数的倒数是( )ABCD5如图,中,E是BC的中点,设,那么向量用向量表示为( )ABCD6下列函数是二次函数的是( )ABCD7下列图形中,既是轴对称图形又是中心对称图形的是()A等边三角形B菱形C平行四边形D正五边形8如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()ABCD9如图,已知12,要使ABDACD,需从下列条件中增加一个,错误的选法是( )AADBADCBBCCABACDDBDC10把抛物线y2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()Ay2(x+1)2+1By2(x1)2+1Cy2(x1)21Dy2(x+1)21二、填空题(本大题共6个小题,每小题3分,共18分)11已知点P(2,3)在一次函数y2xm的图象上,则m_12使有意义的x的取值范围是_13如图,将ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上(1)计算ABC的周长等于_(2)点P、点Q(不与ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC当AQPC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明)_14已知反比例函数的图像经过点,那么的值是_15如图,直线mn,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若1=30°,则2=_16若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_三、解答题(共8题,共72分)17(8分)已知:如图,在RtABO中,B=90°,OAB=10°,OA=1以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,P与x轴的另一交点为N,点M在P上,且满足MPN=60°P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:(发现)(1)的长度为多少;(2)当t=2s时,求扇形MPN(阴影部分)与RtABO重叠部分的面积(探究)当P和ABO的边所在的直线相切时,求点P的坐标(拓展)当与RtABO的边有两个交点时,请你直接写出t的取值范围18(8分)为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成这项工程的规定时间是多少天?19(8分)如图,RtABC中,C=90°,AB=14,AC=7,D是BC上一点,BD=8,DEAB,垂足为E,求线段DE的长20(8分)如图,已知AOB=45°,ABOB,OB=1(1)利用尺规作图:过点M作直线MNOB交AB于点N(不写作法,保留作图痕迹);(1)若M为AO的中点,求AM的长21(8分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担李明按照相关政策投资销售本市生产的一种新型节能灯已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?22(10分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?23(12分)如图,ABC中,点D在边AB上,满足ACD=ABC,若AC=,AD=1,求DB的长 24如图,在ABC中,ABC=90°(1)作ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与O的位置关系,直接写出结果参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据众数、中位数和平均数及方差的定义逐一判断可得【详解】A甲组同学身高的众数是160,此选项正确;B乙组同学身高的中位数是161,此选项正确;C甲组同学身高的平均数是161,此选项正确;D甲组的方差为,乙组的方差为,甲组的方差大,此选项错误故选D【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键2、C【解析】作点A关于MN的对称点A,连接AB,交MN于点P,则PA+PB最小,连接OA,AA.点A与A关于MN对称,点A是半圆上的一个三等分点,AON=AON=60°,PA=PA,点B是弧AN的中点,BON=30 °,AOB=AON+BON=90°,又OA=OA=1,AB=PA+PB=PA+PB=AB=故选:C.3、B【解析】由得,x<3,由得,x1,所以不等式组的解集为:1x<3,在数轴上表示为:,故选B4、D【解析】因为,所以的倒数是.故选D.5、A【解析】根据,只要求出即可解决问题.【详解】解:四边形ABCD是平行四边形,故选:A.【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.6、C【解析】根据一次函数的定义,二次函数的定义对各选项分析判断利用排除法求解【详解】A. y=x是一次函数,故本选项错误;B. y=是反比例函数,故本选项错误;C.y=x-2+x2是二次函数,故本选项正确;D.y= 右边不是整式,不是二次函数,故本选项错误.故答案选C.【点睛】本题考查的知识点是二次函数的定义,解题的关键是熟练的掌握二次函数的定义.7、B【解析】在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内一个图形绕某个点旋转180°,如果旋转前后的图形能互相重合,那么这个图形叫做中心对称图形,分别判断各选项即可解答.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;B、菱形是轴对称图形,也是中心对称图形,故此选项正确;C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;D、正五边形是轴对称图形,不是中心对称图形,故此选项错误故选:B【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握是解题的关键.8、D【解析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1故选D【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键9、D【解析】由全等三角形的判定方法ASA证出ABDACD,得出A正确;由全等三角形的判定方法AAS证出ABDACD,得出B正确;由全等三角形的判定方法SAS证出ABDACD,得出C正确由全等三角形的判定方法得出D不正确;【详解】A正确;理由:在ABD和ACD中,1=2,AD=AD,ADB=ADC,ABDACD(ASA);B正确;理由:在ABD和ACD中,1=2,B=C,AD=ADABDACD(AAS);C正确;理由:在ABD和ACD中,AB=AC,1=2,AD=AD,ABDACD(SAS);D不正确,由这些条件不能判定三角形全等;故选:D【点睛】本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键10、B【解析】函数y=-2x2的顶点为(0,0),向上平移1个单位,再向右平移1个单位的顶点为(1,1),将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】根据待定系数法求得一次函数的解析式,解答即可【详解】解:一次函数y=2x-m的图象经过点P(2,3),3=4-m,解得m=1,故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式12、【解析】二次根式有意义的条件【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须13、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P 【解析】(1)利用勾股定理求出AB,从而得到ABC的周长;(2) 取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.【详解】解:(1)AC=3,BC=4,C=90º,根据勾股定理得AB=5,ABC的周长=5+4+3=12.(2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。故答案为:(1)12;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.【点睛】本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.14、【解析】将点的坐标代入,可以得到-1=,然后解方程,便可以得到k的值【详解】反比例函数y的图象经过点(2,-1),-1=k ;故答案为k【点睛】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答15、75°【解析】试题解析:直线l1l2, 故答案为16、m>1【解析】反比例函数的图象在其每个象限内,y随x的增大而减小,>0,解得:m>1,故答案为m>1.三、解答题(共8题,共72分)17、【发现】(3)的长度为;(2)重叠部分的面积为;【探究】:点P的坐标为;或或;【拓展】t的取值范围是或,理由见解析【解析】发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA=3,进而求出PQ,即可用面积公式得出结论;探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;拓展:先找出和直角三角形的两边有两个交点时的分界点,即可得出结论【详解】发现(3)P(2,0),OP=2OA=3,AP=3,的长度为故答案为;(2)设P半径为r,则有r=23=3,当t=2时,如图3,点N与点A重合,PA=r=3,设MP与AB相交于点Q在RtABO中,OAB=30°,MPN=60°PQA=90°,PQPA,AQ=AP×cos30°,S重叠部分=SAPQPQ×AQ即重叠部分的面积为探究如图2,当P与直线AB相切于点C时,连接PC,则有PCAB,PC=r=3OAB=30°,AP=2,OP=OAAP=32=3;点P的坐标为(3,0); 如图3,当P与直线OB相切于点D时,连接PD,则有PDOB,PD=r=3,PDAB,OPD=OAB=30°,cosOPD,OP,点P的坐标为(,0);如图2,当P与直线OB相切于点E时,连接PE,则有PEOB,同可得:OP;点P的坐标为(,0); 拓展t的取值范围是2t3,2t4,理由:如图4,当点N运动到与点A重合时,与RtABO的边有一个公共点,此时t=2;当t2,直到P运动到与AB相切时,由探究得:OP=3,t3,与RtABO的边有两个公共点,2t3如图6,当P运动到PM与OB重合时,与RtABO的边有两个公共点,此时t=2;直到P运动到点N与点O重合时,与RtABO的边有一个公共点,此时t=4;2t4,即:t的取值范围是2t3,2t4【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键18、这项工程的规定时间是83天【解析】依据题意列分式方程即可.【详解】设这项工程的规定时间为x天,根据题意得 .解得x83.检验:当x83时,3x0.所以x83是原分式方程的解答:这项工程的规定时间是83天【点睛】正确理解题意是解题的关键,注意检验.19、1【解析】试题分析:根据相似三角形的判定与性质,可得答案试题解析:DEAB,BED=90°,又C=90°,BED=C又B=B,BEDBCA,DE=1考点:相似三角形的判定与性质20、(1)详见解析;(1).【解析】(1)以点M为顶点,作AMN=O即可; (1)由AOB=45°,ABOB,可知AOB为等腰为等腰直角三角形,根据勾股定理求出OA的长,即可求出AM的值.【详解】(1)作图如图所示;(1)由题知AOB为等腰RtAOB,且OB=1,所以,AO=OB=1又M为OA的中点,所以,AM=1=【点睛】本题考查了尺规作图,等腰直角三角形的判定,勾股定理等知识,熟练掌握作一个角等于已知角是解(1)的关键,证明AOB为等腰为等腰直角三角形是解(1)的关键.21、(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元【解析】试题分析:(1)把x=24代入y=14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价成本价,得w=(x14)(14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令14x2+644x5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值试题解析:(1)当x=24时,y=14x+544=14×24+544=344,344×(1214)=344×2=644元,即政府这个月为他承担的总差价为644元;(2)依题意得,w=(x14)(14x+544)=14x2+644x5444=14(x34)2+144a=144,当x=34时,w有最大值144元即当销售单价定为34元时,每月可获得最大利润144元;(3)由题意得:14x2+644x5444=2,解得:x1=24,x2=1a=144,抛物线开口向下,结合图象可知:当24x1时,w2又x25,当24x25时,w2设政府每个月为他承担的总差价为p元,p=(1214)×(14x+544)=24x+3k=244p随x的增大而减小,当x=25时,p有最小值544元即销售单价定为25元时,政府每个月为他承担的总差价最少为544元考点:二次函数的应用22、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米(2)10天.【解析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,x=×40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×145,解得:m10,答:至少安排甲队工作10天【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式23、BD= 2.【解析】试题分析:根据ACD=ABC,A是公共角,得出ACDABC,再利用相似三角形的性质得出AB的长,从而求出DB的长试题解析:ACD=ABC,又A=A,ABCACD ,AC=,AD=1,AB=3,BD= ABAD=31=2 .点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB的长是解题关键24、(1)见解析(2)相切【解析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可【详解】(1)如图所示:;(2)相切;过O点作ODAC于D点,CO平分ACB,OB=OD,即d=r,O与直线AC相切,【点睛】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出d=r是解题关键