2023届河北省秦皇岛市青龙县中考数学五模试卷含解析.doc
-
资源ID:87840583
资源大小:741KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届河北省秦皇岛市青龙县中考数学五模试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是( )A74B44C42D402若二元一次方程组的解为则的值为( )A1B3CD3如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿ABC的方向运动,到达点C时停止设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为A B C D4用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A4cmB8cmC(a+4)cmD(a+8)cm5已知方程组,那么x+y的值()A-1B1C0D56函数的图像位于( )A第一象限B第二象限C第三象限D第四象限7关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2x1x21,则k的取值范围在数轴上表示为( )ABCD8如图,等边ABC内接于O,已知O的半径为2,则图中的阴影部分面积为( )A B C D9在函数y中,自变量x的取值范围是( )Ax1Bx1且x0Cx0且x1Dx0且x110如图,ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BFDE,与AE的延长线交于点F,若AB=6,则BF的长为()A6B7C8D10二、填空题(共7小题,每小题3分,满分21分)11一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有_个红球12已知:如图,矩形ABCD中,AB5,BC3,E为AD上一点,把矩形ABCD沿BE折叠,若点A恰好落在CD上点F处,则AE的长为_13如图,菱形的边,是上一点,是边上一动点,将梯形沿直线折叠,的对应点为,当的长度最小时,的长为_14因式分解:3a33a=_15如图,AB是圆O的直径,AC是圆O的弦,AB=2,BAC=30°在图中画出弦AD,使AD=1,则CAD的度数为_°16如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足SPAB=S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为_17若关于的一元二次方程有两个不相等的实数根,则的取值范围为_.三、解答题(共7小题,满分69分)18(10分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:(1)求两人相遇时小明离家的距离;(2)求小丽离距离图书馆500m时所用的时间19(5分)如图,AB为O直径,过O外的点D作DEOA于点E,射线DC切O于点C、交AB的延长线于点P,连接AC交DE于点F,作CHAB于点H(1)求证:D=2A;(2)若HB=2,cosD=,请求出AC的长20(8分)如图,反比例y=的图象与一次函数y=kx3的图象在第一象限内交于A(4,a)(1)求一次函数的解析式;(2)若直线x=n(0n4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若ABC是等腰直角三角形,求n的值21(10分)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD1米,A27°,求跨度AB的长(精确到0.01米).22(10分)解分式方程:=23(12分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是 24(14分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高AB(结果保留根号).参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.2、D【解析】先解方程组求出,再将代入式中,可得解.【详解】解:,得,所以,因为所以.故选D.【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型3、B【解析】分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:等边三角形ABC的边长为3,N为AC的三等分点,AN=1。当点M位于点A处时,x=0,y=1。当动点M从A点出发到AM=的过程中,y随x的增大而减小,故排除D;当动点M到达C点时,x=6,y=31=2,即此时y的值与点M在点A处时的值不相等,故排除A、C。故选B。4、B【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案【详解】原正方形的周长为acm,原正方形的边长为cm,将它按图的方式向外等距扩1cm,新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8a=8cm,故选B【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式5、D【解析】解:,+得:3(x+y)=15,则x+y=5,故选D6、D【解析】根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案【详解】解:函数的图象位于第四象限故选:D【点睛】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键7、D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集解:关于x的一元二次方程x2+2x+k+1=0有两个实根,0,44(k+1)0,解得k0,x1+x2=2,x1x2=k+1,2(k+1)1,解得k2,不等式组的解集为2k0,在数轴上表示为:,故选D点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键8、A【解析】解:连接OB、OC,连接AO并延长交BC于H,则AHBCABC是等边三角形,BH=AB=,OH=1,OBC的面积= ×BC×OH=,则OBA的面积=OAC的面积=OBC的面积=,由圆周角定理得,BOC=120°,图中的阴影部分面积=故选A点睛:本题考查的是三角形的外接圆与外心、扇形面积的计算,掌握等边三角形的性质、扇形面积公式是解题的关键9、C【解析】根据分式和二次根式有意义的条件进行计算即可【详解】由题意得:x2且x22解得:x2且x2故x的取值范围是x2且x2故选C【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键10、C【解析】 ACB=90°,D为AB的中点,AB=6,CD=AB=1又CE=CD,CE=1,ED=CE+CD=2又BFDE,点D是AB的中点,ED是AFB的中位线,BF=2ED=3故选C二、填空题(共7小题,每小题3分,满分21分)11、1【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有x个红球,列出方程=20%, 求得x=1.故答案为1点睛:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率关键是根据红球的频率得到相应的等量关系12、【解析】根据矩形的性质得到CD=AB=5,AD=BC=3,D=C=90°,根据折叠得到BFAB5,EFEA,根据勾股定理求出CF,由此得到DF的长,再根据勾股定理即可求出AE.【详解】矩形ABCD中,AB5,BC3,CD=AB=5,AD=BC=3,D=C=90°,由折叠的性质可知,BFAB5,EFEA,在RtBCF中,CF4, DFDCCF1,设AEx,则EFx,DE3x,在RtDEF中,EF2DE2+DF2,即x2(3x)2+12,解得,x,故答案为:【点睛】此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF的长度是解题的关键.13、【解析】如图所示,过点作,交于点.在菱形中,且,所以为等边三角形, 根据“等腰三角形三线合一”可得,因为,所以在中,根据勾股定理可得,因为梯形沿直线折叠,点的对应点为,根据翻折的性质可得,点在以点为圆心,为半径的弧上,则点在上时,的长度最小,此时,因为所以,所以,所以点睛:A为四边形ADQP沿PQ翻折得到,由题目中可知AP长为定值,即A点在以P为圆心、AP为半径的圆上,当C、A、P在同一条直线时CA取最值,由此结合直角三角形勾股定理、等边三角形性质求得此时CQ的长度即可.14、3a(a+1)(a1)【解析】首先提取公因式3a,进而利用平方差公式分解因式得出答案【详解】解:原式=3a(a21)=3a(a+1)(a1)故答案为3a(a+1)(a1)【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键15、30或1【解析】根据题意作图,由AB是圆O的直径,可得ADB=ADB=1°,继而可求得DAB的度数,则可求得答案【详解】解:如图,AB是圆O的直径,ADB=ADB=1°,AD=AD=1,AB=2,cosDAB=cosDAB=,DAB=DAB=60°,CAB=30°,CAD=30°,CAD=1°CAD的度数为:30°或1°故答案为30或1【点睛】本题考查圆周角定理;含30度角的直角三角形16、4【解析】分析:首先由SPAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值详解:设ABP中AB边上的高是hSPAB=S矩形ABCD,ABh=ABAD,h=AD=2,动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离在RtABE中,AB=4,AE=2+2=4,BE=,即PA+PB的最小值为4故答案为4点睛:本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质得出动点P所在的位置是解题的关键17、.【解析】根据判别式的意义得到,然后解不等式即可.【详解】解:关于的一元二次方程有两个不相等的实数根,解得:,故答案为:.【点睛】此题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.三、解答题(共7小题,满分69分)18、(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为分【解析】(1)根据题意得出小明的速度,进而得出得出小明离家的距离;(2)由(1)的结论得出小丽步行的速度,再列方程解答即可【详解】解:(1)根据题意可得小明的速度为:4500÷(10+5)300(米/分),300×51500(米),两人相遇时小明离家的距离为1500米;(2)小丽步行的速度为:(45001500)÷(3510)120(米/分),设小丽离距离图书馆500m时所用的时间为x分,根据题意得,1500+120(x10)4500500,解得x答:小丽离距离图书馆500m时所用的时间为分【点睛】本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键19、(1)证明见解析;(2)AC=4.【解析】(1)连接,根据切线的性质得到,根据垂直的定义得到,得到,然后根据圆周角定理证明即可;(2)设的半径为,根据余弦的定义、勾股定理计算即可【详解】(1)连接射线切于点,由圆周角定理得:,;(2)由(1)可知:,设的半径为,则,在中,由勾股定理可知:,在中,由勾股定理可知:【点睛】本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键20、(1)y=x3(2)1【解析】(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,),(n,n-3)设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么OED=45°根据平行线的性质得到BCA=OED=45°,所以当ABC是等腰直角三角形时只有AB=AC一种情况过点A作AFBC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程-1=1-(n-3),解方程即可【详解】解:(1)反比例y=的图象过点A(4,a),a=1,A(4,1),把A(4,1)代入一次函数y=kx3,得4k3=1,k=1,一次函数的解析式为y=x3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n3)设直线y=x3与x轴、y轴分别交于点D、E,如图,当x=0时,y=3;当y=0时,x=3,OD=OE,OED=45°直线x=n平行于y轴,BCA=OED=45°,ABC是等腰直角三角形,且0n4,只有AB=AC一种情况,过点A作AFBC于F,则BF=FC,F(n,1),1=1(n3),解得n1=1,n2=4,0n4,n2=4舍去,n的值是1【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中21、AB3.93m【解析】想求得AB长,由等腰三角形的三线合一定理可知AB2AD,求得AD即可,而AD可以利用A的三角函数可以求出【详解】ACBC,D是AB的中点,CDAB,又CD1米,A27°,ADCD÷tan27°1.96,AB2AD,AB3.93m【点睛】本题考查了三角函数,直角三角形,等腰三角形等知识,关键利用了正切函数的定义求出AD,然后就可以求出AB22、x=1【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】方程两边都乘以x(x2),得:x=1(x2),解得:x=1,检验:x=1时,x(x2)=1×1=10,则分式方程的解为x=1【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验23、(1)画图见解析,(2,-2);(2)画图见解析,(1,0); 【解析】(1)将ABC向下平移4个单位长度得到的A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可【详解】(1)如图所示,画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键24、6+【解析】如下图,过点C作CFAB于点F,设AB长为x,则易得AF=x-4,在RtACF中利用的正切函数可由AF把CF表达出来,在RtABE中,利用的正切函数可由AB把BE表达出来,这样结合BD=CF,DE=BD-BE即可列出关于x的方程,解方程求得x的值即可得到AB的长.【详解】解:如图,过点C作CFAB,垂足为F, 设AB=x,则AF=x-4,在RtACF中,tan=,CF=BD ,同理,RtABE中,BE=,BD-BE=DE,-=3,解得x=6+.答:树高AB为(6+)米 .【点睛】作出如图所示的辅助线,利用三角函数把CF和BE分别用含x的式子表达出来是解答本题的关键.